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Executive summary 
The Digital Markets Act (DMA) and similar regulations globally mandate 'continuous and 
real-time' data portability to dismantle data-driven barriers to entry and lower switching costs. 
However, the lack of a precise definition for this requirement creates a critical ambiguity that 
undermines its pro-competitive potential, leaving regulators without a clear compliance 
benchmark and platforms without clear guidance. This report addresses this enforcement 
gap. 
 
To deliver this clarity, we introduce a new taxonomy for classifying data transfer systems 
based on a review of 18 different implementations across 3 sectors: health, finance, and 
social media. Our central finding is that "real-time" is not an absolute measure but is 
context-dependent. We distinguish between "Absolute Real-Time" (the theoretical instant an 
event occurs) and "Functional Real-Time" (the point beyond which further speed provides no 
meaningful benefit to the user). Analysis shows that latency is often dictated not by the 
intrinsic cadence of the data source (eg, physiological processes in glucose monitors) or by 
deliberate architectural choices that trade speed for security, analytical value, or system 
stability. 
 
Ultimately, this research provides policymakers and enforcers with a practical toolkit to move 
beyond absolutist views of speed. The taxonomy and FRT framework enable a nuanced 
evaluation of compliance, ensuring that data portability remedies are not just fast, but 
effective, pro-competitive, and fit-for-purpose. 
 

 

1 This work was supported by the Data Transfer Initiative. 
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1. The policy and economic context behind 
real-time data portability 
The principle of data portability (an individual's right to obtain and reuse their data across 
different services) has emerged as a critical instrument for driving competition across the 
digital economy and is now a central obligation for 'gatekeeper' platforms under the EU's 
Digital Markets Act (DMA). Here, we trace its evolution from a nascent right into a more 
sophisticated policy objective mandating continuous, real-time transfers. 

1.1 The economic costs of data silos: vendor lock-in and 
switching costs 
In digital markets, the absence of effective data portability can give rise to economic friction 
in the form of vendor lock-in and high switching costs.2 Vendor lock-in describes where a 
customer is unable to switch from one provider to another without incurring substantial 
costs.3 These costs include the loss of historical data, as well as the forfeiture of established 
digital identities and social networks, and even the effort required to re-learn workflows on a 
new platform. Some studies suggest this dependency limits consumer choice and innovation 
by smaller market players, ultimately leading to anti-competitive market structures.4 5 
 
Yet, this potential issue can extend beyond consumers and small businesses, creating 
significant burdens for larger organisations. Evidence from major buyers shows that large 
and complex (particularly IT) estates become path-dependent and costly to change. The UK 
CMA’s cloud market investigation identifies factors like egress fees, technical 
incompatibilities, and licensing restrictions6 as material barriers to switching services for 
large firms.7 Some regulators are treating this issue as systemic. For instance, the EU Data 
Act mandates the elimination of cloud switching and data-egress charges by 12 January 
2027 for this reason.8 
 
In the digital economy, data itself has become a primary source of lock-in.9 The cumulative 
value of a user's data on a platform (be it a social network's friend connections, an 
e-commerce site's purchase history, or a cloud provider's stored files) creates a powerful 
disincentive to migrate to new services. This "data gravity"10 effect risks trapping consumers 
and their data within “walled gardens”, reinforcing the market power of incumbents and 

10 https://www.techtarget.com/whatis/definition/data-gravity  
9 https://www.tandfonline.com/doi/full/10.1080/07370024.2024.2325347  
8 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ%3AL_202302854  
7  

6 
https://assets.publishing.service.gov.uk/media/67989251419bdbc8514fdee4/summary_of_provisional
_decision.pdf  

5 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3083114  
4 https://one.oecd.org/document/DAF/COMP(2022)5/en/pdf  
3 https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-016-0054-z  

2 
https://static.aminer.org/pdf/PDF/000/326/425/information_technology_innovation_and_competition_in
_the_presence_of_switching.pdf  



raising barriers to entry for new competitors.11 

1.2 Data portability as a potential pro-competitive policy 
remedy 
Data portability is a direct policy response to the economic harms of vendor lock-in. The right 
to data portability means regulators aim to grant consumers the right to take their data with 
them across services. In turn, reducing the aforementioned switching costs, lock-in and 
dismantling the data-driven barriers that protect some incumbents from competitive 
pressure.12 13 Specifically, when users can easily move their data to a rival service, they are 
more likely to switch in response to differentiating factors like better prices or improved 
service quality. This threat of customer churn can, in theory, encourage platforms to compete 
more vigorously on the merits of their offerings. 
 
Underlying policy, the economic dynamics are complex. An empirical study by Jeon & 
Menicucci (2023), using a two-period competition model, found that under certain conditions, 
data portability can simultaneously increase both consumer surplus and firm profits.14 This 
suggests a potential win-win scenario where enhanced competition does not come at the 
expense of industry viability. However, other research cautions that data portability may not 
generally boost profits or welfare. Lam & Liu (2019) use a two-period entry model to show 
that portability has the desired “switch-facilitating” effect (ie, it lowers switching costs), but 
also may drive a “demand-expansion” effect (ie, users provide more data to incumbents 
when they know it can be ported).15 Where a firm hosts a strong network effect, data 
portability may lead to more user data going their way, strengthening the incumbent’s 
advantage, and thus the demand‑expansion effect dominates. 
 
However, Lam & Liu (2019) also point out that this demand-expansion effect can be driven 
by poorly designed policy that is: i) too broad in scope (ie, covering data with high marginal 
value to the incumbent but low relevance for switching); or, ii) delayed or subject to frictions 
(eg, non-real-time transfers) weaken the switch-facilitating effect, but still leave the 
demand-expansion effect intact. As such, the pro-competitive effect of data portability is not 
guaranteed. It also depends on the specifics of its implementation. Policy design flaws 
flagged by Reimsbach-Kounatze & Molnar (2024)16 concur with Lam & Liu (2019: (i) scope 
drift (ie, lack of clarity around “what and whose data”); (ii) cumbersome modalities (eg, 
one-off exports and unstable APIs, among others); and (iii) expanded security attack 
surfaces from duplicated flows. In particular, ambiguity as to what real-time means recurs 

16 https://ideas.repec.org/p/oec/stiaad/25-en.html  
15 https://publications.aston.ac.uk/id/eprint/41090/1/Does_data_portability_facilitate_entry.pdf  

14 
https://www.tse-fr.eu/publications/data-portability-and-competition-can-data-portability-increase-both-c
onsumer-surplus-and-profits  

13 
https://www.oecd.org/en/publications/the-impact-of-data-portability-on-user-empowerment-innovation-
and-competition_319f420f-en.html  

12 
https://jolt.law.harvard.edu/assets/articlePDFs/v36/Zhang-The-Paradox-of-Data-Portability-and-Lock-I
n-Effects.pdf  

11 https://journals.sagepub.com/doi/10.1177/1024529418816525  



across work on this topic17 18 19 and is a primary reason portability can underperform. 

1.3 The transition from episodic to continuous and 
real-time portability in policy 
Understanding of data portability has evolved, moving through generations of 
implementation. The first generation, or "Data Portability 1.0," was enshrined in Article 20 of 
the European Union's General Data Protection Regulation (GDPR). This landmark provision 
granted individuals the right to receive their data in a "structured, commonly used and 
machine-readable format" and to have it transmitted to another service provider.20 While 
important, the GDPR's framework was hampered by practical limitations. For example, data 
controllers were given up to 30 days to respond to requests, which often resulted in one-off, 
static data dumps. This long lead time rendered the data obsolete for many dynamic use 
cases.21 
 
These shortcomings have led to "Data Portability 3.0," a new focus on continuous, real-time, 
API-based data flows. This vision is articulated in Article 6(9) of the DMA, which mandates 
that designated "gatekeeper" platforms provide "continuous and real-time access" to data. 
This requirement is what gives the DMA's portability provisions their pro-competitive teeth, 
with continuous and real-time access being valuable here to make data portability 
requirements effective in fast-moving digital markets.22 Therefore, understanding what 
continuous and real-time data transfers are and what it means for them to be real-time is an 
important question for both digital competition policy and the subjects of that policy. 

2. A taxonomy of continuous and real-time data 
transfers 
Some prior work have developed taxonomies focused on the strategic business value of 
real-time data initiatives23, or creating highly technical, machine-readable data models for IoT 

23 https://management-datascience.org/articles/9967/  

22 
https://cerre.eu/wp-content/uploads/2022/11/DMA_DataAccessProvisions-2.pdf#:~:text=of%20such%
20data%20portability%2C%20and,an%20effective%20instrument%20to%20spur  

21 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3866495  

20 
https://www.researchgate.net/publication/351070025_Data_Portability_between_Online_Services_An
_Empirical_Analysis_on_the_Effectiveness_of_GDPR_Art_20  

19 
https://www.oecd.org/en/publications/the-impact-of-data-portability-on-user-empowerment-innovation-
and-competition_319f420f-en.html  

18 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3862299  

17 
https://op.europa.eu/en/publication-detail/-/publication/21dc175c-7b76-11e9-9f05-01aa75ed71a1/lang
uage-en  



environments.24 Crucially, regulations like the DMA do not define “continuous” or “real-time”, 
and no general taxonomy of continuous, real-time data transfers yet exists.25 26 27 
 
The taxonomy presented here is explicitly designed for a non-technical audience 
(policymakers and consumer advocates). Rather than classifying business outcomes or 
low-level data structures, it categorises the observable mechanics of data-transfer systems 
to establish a common practical language for how these services work. 
 
This paper contributes to the field not only through its findings but also through its 
methodology. We provide a new, replicable method for analysing the performance of data 
portability remedies by developing a structured taxonomy and an FRT framework from 
observational data of 18 in-market systems. This is a critical need as regulators worldwide 
implement and enforce these rules. 

2.1 Key definitions: what do we mean by “continuous” and 
“real-time”? 
Data transfer is generally defined as the movement (copying, streaming or migrating) of 
digital information from one point, system or location to another.28 29 To understand the 
benefits of real-time and continuous data transfers as a key part of data portability 3.0, it is 
first important to understand what we mean by these qualifiers. NIST’s glossary frames 
real-time as a latency threshold dictated by the external event, not by the network alone.30 

2.2 The taxonomy: how can we classify continuous and 
real-time data transfers? 
Defining ‘continuous’ and ‘real-time’ in practice is challenging due to diverse 
implementations. We reviewed 18 implementations across six use cases and developed a 
framework to classify the different approaches. Table 1 summarises the selected use cases 
and implementations (see Annex A for methodology). 
 
Table 1. Use case areas, use cases and implementations 

Use case area Use case Implementation 

 
 
 

a) "A user wants to see their current glucose 
level right away and also review their broader 
trends automatically throughout the day." 

i) Dexcom G7 (Dexcom API V3) 31 
32 

32 https://developer.dexcom.com/docs/dexcomv3/endpoint-overview/  
31 https://s3.us-west-2.amazonaws.com/dexcompdf/G7/AW00046-05_UG_G7_OUS_en_MMOL.pdf  
30 https://csrc.nist.gov/glossary/term/real_time  

29 https://csrc.nist.gov/glossary/term/data_transfer_solution  

28 https://www.itu.int/dms_pubrec/itu-r/rec/v/R-REC-V.662-2-199304-S%21%21PDF-E.pdf  
27 https://cerre.eu/wp-content/uploads/2023/03/230327_Data-Act-Book.pdf  
26 https://dtinit.org/assets/DTI-Data-Portability-Compendium.pdf  
25 https://www.tu-ilmenau.de/fileadmin/Bereiche/WM/wth/Diskussionspapier_Nr_192.pdf  
24 https://www.sciencedirect.com/science/article/pii/S254266052400101X  



 
1) Iot Wearables 

ii) FreeStyle Libre 3 Sensor33 

iii) Medtronic Guardian Connect34 

b) "A user wants to watch their heart rate in 
real time during exercise and check later how 
their body recovered afterward.” 

i) Polar H10 (via BLE)35 

ii) Garmin The Vivosmart 5 API36 

iii) Fitbit (Charge 5/Sense) API37 

 
 
 
 
2) Personal 
Banking & 
Finance 

a) “A user wants their budgeting app to 
update transactions immediately after they 
happen, no matter which bank they used.” 

i) Plaid Webhooks38 

ii) Yodlee Webhooks39 

iii) TrueLayer40 

b) "A user wants one platform to give live 
stock prices and let them trade automatically, 
even if they use different brokerages.” 

i) Charles Schwab Trader API41 

ii) Alpaca Markets API42 

iii) Tradier API43 

 
 
 
 
 
3) Messaging & 
Social Media 

a) “A user wants to receive alerts instantly 
when they’re mentioned in a message or 
post, no matter where it’s posted.” 

i) Discord API44 

ii) X Filtered Stream API45 

iii) Slack Events API46 

b) “A user wants to manage their email from 
multiple accounts (eg, work, personal) in a 
single application, with new messages, event 
invitations, and updates appearing instantly, 
regardless of which account they are sent to.” 

i) Fastmail (JMAP)47 

ii) Dovecot (IMAP)48 

iii) Gmail (Google Workspace 

48 https://doc.dovecot.org/2.4.1/ 
47 https://www.fastmail.help/hc/en-us/articles/1500000278382-Email-standards 
46 https://docs.slack.dev/apis/events-api/ 
45 https://docs.x.com/x-api/posts/filtered-stream/introduction 
44 https://github.com/meew0/discord-api-docs-1/blob/master/docs/topics/GATEWAY.md 
43 https://documentation.tradier.com/brokerage-api/streaming 
42 https://docs.alpaca.markets/docs/streaming-market-data#:~:text=Connection 
41 https://developer.schwab.com/user-guides/get-started/introduction  

40 
https://developer.yodlee.com/resources/yodlee/json-web-token-authorization/docs#:~:text=You%20us
e%20an%20application%20token,header%20for%20the%20RESTful%20APIs  

39 https://developer.yodlee.com/resources/yodlee/webhooks/docs/overview  
38 https://plaid.com/docs/identity-verification/webhooks/  
37 https://dev.fitbit.com/build/reference/web-api/intraday/  

36 
https://developer.garmin.com/gc-developer-program/health-api/#:~:text=Health%20API%20Features  

35 https://bjsm.bmj.com/content/50/7/441  

34 
https://resources.cloud.medtronic-diabetes.com/sites/prd/files/documents/2022-04/guardian_connect_
-_getting_started_guide.pdf  

33 https://freestyleserver.com/payloads/ifu/2023/q3/ART41641-001_rev-A-web.pdf  



API)49 50 

 
Examining each implementation’s technical documentation (referenced in Table 1.) revealed 
several key factors that affect how ‘real-time’ a transfer can be. We describe these factors in 
the taxonomy below, and Table 2 in Annex A maps each implementation to the taxonomy 
dimensions. 

2.2.1 Where is data sharing initiated by the user? 

2.2.1.1 Initiated from the source platform 
In this model, the user initiates the data sharing process from within the source platform's 
own application or website. The user navigates through the source platform's settings or 
sharing menus to select a third party and authorise the connection. This flow keeps the user 
within a familiar environment, giving the source platform significant control over the user 
experience and the presentation of consent. 

2.2.1.2 Initiated from the third-party application 
Here, the data sharing journey begins within the third-party (recipient) application. The user, 
seeking to import data, is prompted by the third-party app to connect to an external source. 
This typically triggers a redirect (eg, via an OAuth flow) to the source platform for 
authentication and consent before returning the user to the third-party app. This model is 
common for data aggregators and services that integrate with multiple sources. 

2.2.1.3 Initiated from on-device pairing 
In this model, the initial connection is established through a direct, localised action between 
a physical device and a user's smartphone or hub. This often involves Bluetooth pairing or a 
similar proximity-based protocol. While subsequent data sharing to the cloud or other apps 
still requires further authorisation, the foundational link is created on-device, independent of 
a web-based flow. 

2.2.2 What is the data pathway? 

2.2.2.1 On-device hub 
In an on-device hub setup, the user’s phone acts as the relay. The user controls when data 
uploads occur (eg, by opening the app or enabling Bluetooth), so update speed hinges on 
the phone’s connectivity and power. If the phone is offline or the app is closed, data queues 
locally and uploads later, meaning updates are only as timely as the phone’s connection 
permits 

2.2.2.2 Direct connection 
Data moves from the source's cloud servers directly to the third party's cloud servers. Once 
authorisation is granted, the service streams data or alerts as soon as it’s available. Because 

50 https://cloud.google.com/pubsub/docs/push  
49 https://developers.google.com/workspace/gmail/api/guides/push  



the data bypasses a user’s device, updates can be very timely; market feeds and messaging 
events arrive within seconds or milliseconds of occurrence. However, sustained real-time 
performance depends on an efficient mechanism for notifying clients of new data. While this 
is often achieved with a persistent connection (eg, an open WebSocket51 52), it can also be 
accomplished without a continuously open connection through event-driven protocols like 
webhooks, which avoids the resource intensity of constant polling. 

2.2.2.3 Intermediary hub 
Data moves through a central intermediary that can read and process the raw data. 
Intermediary hubs sit between the original data source (such as a bank) and your 
application. They aggregate data from many providers and then notify integrators via 
webhooks when something changes. This model offloads the complexity of polling multiple 
upstream sources but introduces additional latency; the intermediary must first collect data 
(often through scheduled polling) before pushing a notification, so updates may be 
“near‑real‑time” rather than instantaneous. 

2.2.3 Whose credentials? 

2.2.3.1 User credentials only 
The user provides their source platform login credentials (eg, username and password) 
directly to the third-party application or an intermediary. The third party then uses these 
credentials to log in on the user's behalf, and often gathers data through methods like 
screen-scraping. This model places the burden of trust on the user's willingness to share 
their information. A better approach that still only relies on user credentials is to ask the user 
to generate a secret key based on their credentials, which the user can then share with the 
third party without sharing their password (eg, such as is the case with GitHub53). This is 
often difficult UX54 but can work. 

2.2.3.2 User and vetted 3rd party credentials 
In this model, the source platform identifies a pre-registered third-party application by 
validating its unique credentials (eg, a Client ID and Client Secret) during an API-driven 
authentication flow, typically OAuth 2.0.55 The user also authenticates directly with the 
source platform, which then issues a temporary, revocable access token that is linked to 
both user and 3rd party credentials. In some implementations of this, the 3rd party must also 
go through vetting processes that can examine data security practices, privacy policies, or 
more. 

2.2.3.3 On-device pairing - proximity 
Instead of using credentials, data access is established through a secure, proximity-based 
pairing process between a hardware device and a controlling application (eg, a smartphone 

55 https://oauth.net/2/  
54 https://dev.to/msnmongare/how-to-add-github-secrets-easily-step-by-step-guide-3cmh  
53 https://docs.github.com/en/actions/how-tos/write-workflows/choose-what-workflows-do/use-secrets  
52 https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API  

51 A WebSocket is a communication protocol that allows for real-time, two-way interaction between a 
client (like a web browser) and a server over a single, long-lasting connection. 



app), initiated by the user. The smartphone platform using a protocol like Bluetooth Low 
Energy does not allow any random nearby device to connect, but requires user approval as 
well as proximity. This initial trust relationship is foundational and confined to the local device 
ecosystem. 

2.2.4 How is user consent obtained? 

2.2.4.1 Explicit consent via redirect 
The user grants consent through a dedicated, standardised interface, typically after being 
redirected from the third-party app to the source platform's domain. This flow presents the 
user with a "consent screen" that explicitly lists the requesting application, the data being 
requested, and the permissions required. The user must take an affirmative action, such as 
clicking an "Authorise" or "Allow" button, to grant consent and be redirected back.   

2.2.4.2 Implicit consent via in-app invitation 
Consent is granted through a series of actions within the source or recipient application that 
do not involve a standardised redirect to a consent screen. For example, a user might enter 
a recipient's email address within the source app to send a sharing invitation. The recipient 
then accepts this invitation in their own app or via email. Consent is implied by the user's 
deliberate actions to initiate and accept the sharing link, rather than by a single "Authorise" 
click on a dedicated screen.  

2.2.5 What is the duration of the permission? 

2.2.5.1 Time-bound 
With time-bound permissions, the user’s authorisation expires after a set period. Data flows 
continuously for the permitted duration, but the stream will stop unless the credential is 
refreshed or a sensor is replaced. This introduces maintenance overhead and the risk of 
downtime if a renewal is missed. For example, a continuous glucose monitor only delivers 
real-time data until the sensor expires, and an API integration (eg, TrueLayer or Schwab) 
requires periodic token refreshes to keep the feed live. 

2.2.5.2 Open-ended 
Open‑ended permissions mean that once users approve access, the service can stream 
data indefinitely (subject to user revocation). For real‑time integrations (whether CGMs like 
Dexcom, messaging APIs like Slack, or trading feeds like Alpaca), this eliminates 
token‑refresh overhead and reduces the risk of missed updates. Developers still need to 
manage key security, but the data flow itself can remain continuous and uninterrupted for 
months or years. 

2.2.6 How is new data delivered? 

2.2.6.1 Pull 
In a pull model, the client periodically asks the server for updates. This can be done on a 
recurring schedule or using more efficient methods like long polling. This gives developers 



full control over when data is retrieved, but it also means there can be gaps between the 
moment data is available and when it’s actually fetched. Frequent polling can approximate 
“real‑time,” but doing so increases network usage and power consumption. 

2.2.6.2 Push 
In pure push systems, data is delivered automatically as soon as it’s generated. This can be 
in the form of discrete data packages (eg, a single new post) or as a continuous live stream 
of data over a persistent connection. This produces very fresh information with minimal 
delay, ideal for alerts or market feeds. However, it depends on maintaining an open 
connection (WebSocket or BLE link), and interruptions in connectivity will pause the stream 
until reconnected. 

2.2.6.3 Hybrid 
Hybrid systems combine push and pull methods. In most cases, we examined, the service 
sends a quick notification (push) to alert clients that new data is available, and the client then 
retrieves the full data (pull). This reduces unnecessary polling while still giving timely alerts. 
Either way, there can be a small delay between the initial data availability and when a client 
obtains the full data, but overall latency remains low and network overhead is reduced 
compared with constant polling. 

2.2.7 Can existing data be changed? 

2.2.7.1 Immutable (append-only) 
For systems where data is append‑only, new records are added, but old ones cannot be 
changed or deleted. New readings or events simply add to a growing timeline, and there is 
no need to handle corrections or deletions. This simplifies real‑time processing because 
listeners can process incoming data immediately and trust that history won’t change. 
However, if a sensor or market feed produces an erroneous value, consumers have to 
correct it themselves since the source never retracts or edits past data. 

2.2.7.2 Mutable (append with changes) 
In mutable systems, a message, transaction or event can later be edited, deleted or have its 
status updated. New records are added, and existing ones can be updated or deleted. 
Real‑time consumers need to handle correction and deletion messages and reconcile 
updates with previously stored data. This introduces extra complexity as clients must 
maintain a local cache and listen for “change” notifications to keep it accurate. While updates 
ensure accuracy, they can also create brief discrepancies between what was seen in real 
time and the corrected record. 

2.2.8 How frequent is the data? 

2.2.8.1 Live 
Live systems deliver data almost instantly as it’s generated. Market feeds and sensor 
streams fall into this category; once a WebSocket or BLE connection is open, every new 
heartbeat or trade is pushed down the wire with minimal buffering. This enables true 



real‑time applications (there’s virtually no delay), but this depends on maintaining a 
persistent connection and keeping devices powered and connected. 

2.2.8.2 Near-Live 
Near‑live systems provide reasonably timely data, often every minute or every few minutes. 
Physiological sensors like Libre, Guardian and Lingo fall into this bucket; they send readings 
at one‑ or five‑minute intervals. Many webhook-based services alert clients shortly after a 
change occurs, but a brief polling or processing delay means these updates are 
near-real-time rather than truly instantaneous. In practice, this cadence is sufficient for most 
applications despite not being absolutely live. 

2.2.8.3 Periodic 
In periodic systems, new data doesn’t arrive continuously but in batches after a fixed delay. 
For example, Dexcom’s three‑hour delay means that software relying on the public API sees 
glucose values hours after they’re recorded. This model may be acceptable for retrospective 
analysis or low‑urgency tasks, but it precludes real‑time monitoring. 
 
All of these dimensions raise a fundamental question: what does it mean for a data transfer 
to be ‘real-time’ in practice? NIST’s definition gives a clue by tying real-time to the timing of 
the external event (not just network speed), but it doesn’t tell us how to determine if a given 
solution meets the real-time bar. 

2.3 Reflections on real-time: What do we mean? 
As discussed, this question of what constitutes “continuous and real-time” data access 
creates significant challenges for both policy implementation and compliance. Namely, it 
leaves both regulators and regulated entities without a clear benchmark for what constitutes 
an acceptable level of performance. This section addresses this definitional problem directly, 
arguing that a context-aware framework is essential for bringing clarity to the concept of 
real-time. 

2.3.1 Absolute vs functional real-time 
A continuous and real-time data transfer is not cannot be real-time in an absolute sense. Its 
real-time-ness is a function of latency relative to a specific context. Here we can distinguish 
between two key concepts: 

● Absolute real-time (ART): The theoretical, instantaneous moment an event occurs. 
This is a physical limit that is impossible to achieve in practice. 

● Functional real-time (FRT): The point of diminishing returns, beyond which further 
reductions in latency are no longer perceptible or meaningful to the user for a given 
task. For instance, a video call that already feels instantaneous may not benefit from 
further speed improvements. 

At the most trivial level, signals cannot arrive before they are sent. Even in fibre‑optic cables, 
light pulses travel through the fibre‑optic medium much more slowly than through a 



vacuum.56 Physical limits (like the speed of light through fibre) impose a floor on latency, 
which is a propagation delay that cannot be eliminated.57 Once such limits dominate the total 
delay, improving processor speeds or protocols yields only marginal gains in end-to-end 
latency. This aligns with Amdahl’s Law: the speed-up from any improvement is limited by the 
portion of the process that can’t be accelerated.58 In other words, if an event itself only 
occurs every 5-10 minutes, no technology can produce the data faster than (or at the exact 
same time as) that natural 5-10 minute cycle, at best, the system can only approach this 
limit. 
 
Together, this suggests that as you approach the moment of the event, each improvement 
shaves off smaller and smaller slices of latency because the remaining delay is dominated 
by unoptimisable components (eg, the time it takes light or glucose molecules to travel in 
related events). Therefore, the curve for improving the performance (ie, lowering the latency) 
of continuous and real-time data transfers bends towards, but never crosses, the ART 
boundary. But, it may cross the FRT boundary. That is, if the remaining delay falls below the 
threshold of human perceptual limits (or their expectations about the rate at which an event 
happens), additional speed adds little or no practical benefit for the experience of an end 
user. 
 
Putting these concepts together, we can compile the graph shown in Figure 1. This 
illustrates the conceptual relationship between latency and the effort required to improve it: 

● The vertical Y-axis represents Performance in terms of lower latency. The top of the 
axis is zero latency (instantaneous), with delay increasing towards the bottom. The 
scale is presented conceptually like a logarithmic scale, which allows for better visual 
distinction between very fast response times (eg, 20 milliseconds vs. 500 
milliseconds) that would otherwise be clustered together at the top of a linear scale. 

● The horizontal X-axis represents Effort. This can be understood as the cumulative 
investment (eg, engineering time, financial cost, architectural complexity) applied to 
reduce latency. 

 
The curve's shape illustrates the principle of diminishing returns, consistent with Amdahl's 
Law. Initial improvement efforts yield significant reductions in performance, but as the 
system gets faster, the same amount of effort produces smaller and smaller gains as it 
approaches fundamental physical or intrinsic limits. 
 
Figure 1. FRT Framework 

58 https://www.staff.ncl.ac.uk/rishad.shafik/files/2020/01/IET-Amdahl-Review.pdf  
57 https://mapyourtech.com/latency-in-optical-networks-principles-optimization-and-applications/  
56 https://www.sciencedirect.com/science/article/pii/S2666285X22000280  



 

3. Findings: real-time in practice 
We surveyed public documentation (and developer discussions, where needed) for a range 
of digital services and plotted their end-to-end propagation delays on our Figure 1 curve. 
From financial APIs to wearable health sensors, this lets us see what a practical functional 
real-time benchmark looks like across sectors.  
 
Also, we focus on evidence for the best-case scenario, end-to-end propagation delay, 
assuming user data is being shared with a third party for some purpose. This is to ensure 
that our findings are relevant for prospective regulatory compliance purposes (eg, a private 
company sharing a continuous and real-time stream of x data for y purpose.) 
 
Lastly, we focused on each system’s best-case end-to-end delay (ignoring outliers and 
assuming optimal conditions) to align with potential regulatory compliance scenarios. Where 
exact data was unavailable, we chose an estimate. We ensure that even the lowest estimate 
puts this implementation on one side of the FRT threshold, ensuring our comparisons are 
meaningful. (See Annex A. for details on determining the FRT level in each case.) 

3.1 Use case: blood glucose monitoring 
In this use case, continuous glucose monitoring systems are inherently limited by a 
physiological delay of at least 5 minutes between blood glucose changes and interstitial 
fluid measurements. We set the FRT level accordingly. 
 
Dexcom G7 (API): The official API is intentionally delayed by ~1 hour (3 hours outside the 
US)59 possibly as a policy choice to provide high quality analytics.60 Thus, any thirdparty app 
using the public API sees at least a ~1 hour propagation delay, even though Dexcom’s own 
app/receiver updates on a near-real 5‑minute cycle (a latency not offered via the public API.) 

60 https://forum.fudiabetes.org/t/dexcom-developer-api-now-live/2059 
59 https://developer.dexcom.com/docs/dexcomv3/endpoint-overview/  



 
Abbott Libre 3: Streams a new glucose reading every 1 minute to the user’s phone, and 
integrated apps can relay that data almost immediately.61 Under ideal conditions, the 
end-to-end delay to an authorised third-party service is on the order of ~1 minute (dominated 
by the sensor’s one-minute sampling interval, with only a few seconds added for 
transmission). 
 
Medtronic Guardian Connect: Generates a new reading every 5 minutes and pushes it to 
the phone immediately.62 In the best case (forwarding each reading without delay), a 
third-party service can receive data in ~5 minutes end-to-end. As with other sensors, the 
frequency of measurement (5 min) dictates the latency; only a few seconds are added in 
transit. 
 
Figure 2. Functional real time across CGM monitoring implementations 

 

3.2 Use case: heart rate monitoring 
In this use case, wearable heart-rate monitors must average beat-to-beat intervals over 
approximately one full respiratory cycle (~8 seconds) to produce a stable and meaningful 
BPM reading. So, we set the functional real time lower bound at this level. 
 
Polar H10 (BLE): Streams heart-rate data packets covering ~0.5s of readings at a time, 
arriving on the phone essentially in real time.63 In optimal conditions, the phone receives 
data in under 1 second, so we estimate ~0.5s as a best-case propagation to a thirdparty (if 
the app forwards data instantly.) Garmin Vivosmart 5: Provides a real-time heart-rate 

63 https://github.com/polarofficial/polar-ble-sdk/issues/227  
62 https://www.uspharmacist.com/article/guardian-connect-continuous-glucosemonitoring-system  

61 
https://www.freestyle.abbott/uk-en/support/faq/question-answer.html?q=UKFaqquestion-114#:~:text=T
he%20FreeStyle%20Libre%203%20app,hour%20glucose%20graph  



stream to the phone via its software development kit (SDK).64 If an app immediately relays 
this data to a server, documentation indicates ~1 second end-to-end is achievable65 
(assuming the data isn’t waiting for Garmin’s cloud, which can add minutes of delay.) 
 
Fitbit Charge 5 / Sense: Captures heart-rate data at 1 second granularity66, but uploads that 
data only when the smartphone app syncs (eg, when opened, or occasionally in 
background). With the app open and forwarding data immediately, a best-case end-to-end 
delay of only a few seconds (~2 s) is achievable.67 However, if the app isn’t actively syncing, 
data might not be uploaded for minutes or even hours until the next sync. 
 
Figure 3. Functional real time across HRM monitoring implementations 

 

3.3 Use case: budgeting apps 
In this use case, financial data aggregation can, in principle, propagate new transactions 
within the physical network limit of ~15ms round-trip time (RTT), meaning observed delays 
are caused by factors other than technical constraints. Since this is below the perceptual 
threshold for an “instant” response, we adopt Nielsen’s 100ms limit as the FRT benchmark. 
 
Yodlee (bank webhooks): Yodlee reports that webhook events are typically received ~5 
minutes after the triggering user action, so ~5 min is the best-case latency for updates.68  
 

68 https://developer.yodlee.com/resources/yodlee/webhooks/docs/consent_events  

67 
https://dev.fitbit.com/build/reference/web-api/intraday/get-heartrate-intraday-by-date-range/#:~:text=G
et%20Heart%20Rate%20Intraday%20by,Date%20Range  

66 https://fitbit.google/enterprise/researchers-faqs/  

65 
https://www.thisisant.com/APIassets/1.0.0_ANTnRFConnectDoc/samples/ant_plus/ant_hrm/hrm_tx/R
EADME.html#:~:text=Parameter,8070%20(4.06%20Hz)  

64 https://developer.garmin.com/health-sdk/questions-answers/  



Plaid (transaction webhooks): Plaid’s docs state that an “INITIAL_UPDATE” webhook 
usually fires ~10 s after a new transaction, and a “HISTORICAL_UPDATE” within ~1 min.69 
We take these as best-case latencies from the transaction event to the webhook. (Plaid’s 
ongoing updates, however, only pull data a few times a day unless manually refreshed, so 
day-today latency depends on the refresh schedule and the bank involved.)  
 
TrueLayer (instant payouts): An instant payout executes within a few seconds (SEPA 
Instant ≤10 s; Faster Payments ~instant).70 71 TrueLayer sends a webhook once the payment 
is marked “executed”.72 In ideal conditions (instant-capable banks, no risk checks, good 
network), we estimate ~2 s from initiation to webhook reception. (External factors like bank 
support or fraud checks can introduce additional delays.) 
 
Figure 4. Functional real time across budgeting implementations 

 

3.4 Use case: brokerage apps 
Note: While brokerage APIs are widely known for streaming public market data like stock 
prices in real-time, they are fundamentally tools for personal data portability. They transmit 
sensitive, user-specific information, including personal account balances, portfolio positions, 
and trade execution confirmations (successes or failures). Therefore, the performance of 
these APIs is critical for managing personal financial data and falls squarely within the scope 
of this analysis. 
 
In brokerage trading, data feeds can run at ultra-low latency, on the order of microseconds in 
co-located systems. These speeds are well below human perception thresholds, so we 

72 https://docs.truelayer.com/docs/payout-webhooks  

71 
https://www.europeanpaymentscouncil.eu/sites/default/files/kb/file/2024-11/EPC004-16%202025%20
SCT%20Instant%20Rulebook%20v1.0.pdf 

70 https://www.wearepay.uk/what-we-do/payment-systems/faster-payment-system/  
69 https://plaid.com/docs/transactions/webhooks/  



again use ~100ms as the functional real-time benchmark. 
 
Schwab streaming API: Described as delivering updates in “up-to-the-second” time.73 In 
practice, documentation implies a best-case latency of about 0.5s from market update to 
client74 under optimal conditions (stable connection, highest priority streaming). Schwab calls 
this feed real-time75 but offers no strict latency SLA. So, ~500ms is an inferred best case 
(with occasional network or rate-limit delays causing slower updates).  
 
Alpaca API: Streams most market updates in as little as ~20ms76 (aside from rare outliers, 
eg, a delayed bar arriving ~30s late due to late trade reports).  
 
Tradier API: Streams quotes essentially as they happen77; unofficial reports suggest ~60 ms 
typical latency78. Neither Alpaca nor Tradier publishes a strict SLA, but in both cases we 
assume sub-second latency in the best case under normal conditions. 
 
Figure 5. Functional real time across brokerage implementations 

 

3.5 Use case: messaging & social media 
In this use case, modern messaging and social media platforms are capable of delivering 
events in tens of milliseconds over optimised streaming protocols. Since this is below the 
perceptual “instantaneous” threshold, we apply Nielsen’s 100ms limit as the FRT reference 
point. 
 

78 https://www.elitetrader.com/et/threads/tradier-api.284313/page-2  
77 https://documentation.tradier.com/brokerage-api/overview/streaming  

76 
https://forum.alpaca.markets/t/why-is-a-small-subset-of-1m-ohlcv-bars-delayed-by-30s-from-sip-webs
ockets-data-connection/6207/2  

75 https://www.schwab.com/trading/web-trading  
74 https://allensarkisyan.github.io/schwab-td-ameritrade-streamer/td-streamer/  
73 https://www.schwab.com/execution-quality  



Slack Events API: No official latency SLA (Slack only requires that apps ack events within 3   
s).79 In practice, events are pushed immediately when they occur, anecdotal evidence 
suggests around ~300 ms end-to-end.80 We use ~0.3 s as the inferred best-case latency for 
Slack’s event delivery.  
 
Discord Gateway: Events on a persistent WebSocket typically arrive in the 30-300 ms 
range on a good connection.81 There’s no official latency promise, but ~30 ms can be 
considered an ideal-case scenario.  
 
X (Twitter) Filtered Stream: This is currently the fastest feed offered by X, real-world 
reports show roughly ~5 s from a tweet’s creation to its delivery to the client82 under good 
conditions. (X provides no guaranteed latency; ~5 s is an inferred best-case, with actual 
speed varying based on filters, load, etc.) 
 
Figure 6. Functional real time across social media implementations 

 

3.6 Use case: mail 
In this use case, calendar synchronisation can propagate changes within tens of 
milliseconds on a push-capable protocol. Given this is faster than the perceptual 100ms limit, 
we use Nielsen’s definition of “instantaneous” as the relevant FRT level.  
 
Fastmail (JMAP): With an active push connection, Fastmail delivers mailbox updates 
almost instantaneously. Fastmail’s own reports and user anecdotes indicate new-mail 

82 https://devcommunity.x.com/t/filtered-stream-delay/245941  

81 
https://javadoc.io/doc/org.javacord/javacord-api/3.1.0/org/javacord/api/DiscordApi.html#getLatestGate
wayLatency–  

80 https://community.boomi.com/s/article/Slack-Events-Integration-Framework  
79 https://docs.slack.dev/apis/events-api/  



notifications often arrive within ~1s in best cases.83 84 Any longer delays usually stem from 
extra processing (spam filters, mailbox locks) rather than the push protocol itself. 
 
Dovecot IMAP (IDLE): By design, Dovecot throttles new-mail alerts with a ~0.5 s debounce 
(delay) before notifying clients.85 This sets a best-case latency floor of roughly half a second 
(plus minimal network transit). Some servers have eliminated or reduced this builtin delay86, 
achieving a few hundred milliseconds in practice. With no official latency SLA from Dovecot, 
~0.5s is an inferred best-case for near-instant IMAP notification. 
 
Gmail push (Pub/Sub): Google provides no strict latency guarantee, describing its Pub/Sub 
notification service only as “near-real-time.” Actual performance varies with server locations 
and load. One measurement by a developer found ~300ms to be an achievable bestcase 
latency when the Pub/Sub system is fully warmed up and publisher/subscriber are in the 
same region.87 
 
Figure 7. Functional real time across email implementations 

 

87 
https://www.davidxia.com/2021/08/benchmarking-kafka-and-google-cloud-pub-slash-sub-latencies/#:~
:text=With%20my%20specific%20test%20parameters%2C,According%20to  

86 https://github.com/chatmail/relay/issues/72  

85 
https://dovecot.org/mailman3/archives/list/dovecot%40dovecot.org/thread/J2L67F75QW5MJBIRKMB
GA2AKNJHRC33X/  

84 https://news.ycombinator.com/item?id=15854226  
83 https://www.fastmail.com/blog/what-we-talk-about-when-we-talk-about-push/  



4. Discussion: factors affecting real-time 

4.1 Intermediary processes 

4.1.1 Managing complexity and ensuring security 
Many implementations that fall short of the FRT speed do so by design, intentionally trading 
speed for safety and managing scale. For example, aggregators like Yodlee (~5 min latency) 
and Plaid (~10s) use an intermediary-hub and hybrid model that slows data transfers down 
but vastly eases integration. These intermediaries88 handle thousands of different bank 
connections, secures sensitive credentials, and perform fraud checks. Directly connecting to 
every bank’s API would be impractical. Services like Plaid or Yodlee act as universal 
adapters, offering one unified interface at the cost of some latency. 
 
Similarly, instead of pushing updates directly to every client, Gmail offloads that burden to a 
cloud intermediary (Google Cloud Pub/Sub). This design adds a slight delay but allows 
Gmail to reliably fan out huge volumes of notifications globally without maintaining countless 
individual WebSocket streams. Smaller platforms like Slack or Discord handle real-time 
events with direct server-to-client WebSockets, but at Gmail’s scale an intermediary service 
is necessary to achieve stability and reach. 

4.1.2 Adding analytical value 
Sometimes a deliberate processing delay is built in to add value. For instance, the X (Twitter) 
Filtered Stream still delivers data via a direct API connection, but under the hood it runs 
incoming tweets through moderation and enrichment pipelines. This internal ‘intermediary’ 
step adds latency by design, yielding a safer and richer feed than a raw firehose.  
 
Similarly, Dexcom G7 acts as its own intermediary for third parties. Namely, the device’s 
cloud service delays data by >1 hour specifically to provide a retrospective/trend data 
service, rather than a live feed. In contrast, other CGMs like Libre 3 or Guardian Connect do 
not introduce such delays, instead relaying data to partners much closer to real-time. In each 
case, added latency is an intentional trade-off to filter or enrich the data before it reaches 
external developers. 
 
Thus, the introduction of an intermediary pathway is a deliberate architectural choice which 
can be deployed to i) manage complexity, ii) enhance security, or iii) add analytical value to 
the data. While such systems may not be functionally real-time, their latency is often a 
legitimate and necessary trade-off for these other essential functions. 

88 
https://theodi.org/insights/explainers/what-are-data-intermediaries/#:~:text=What%20is%20a%20data
%20intermediary%3F,'  



4.2 Intrinsic cadence 

4.2.1 Physical cadence 
As noted earlier, every data source has an intrinsic cadence that sets a hard limit on update 
frequency. In health monitoring, for example, CGMs (Libre 3, Guardian Connect) cannot 
reflect blood-sugar changes faster than the body’s own chemistry (~5 minutes for glucose to 
diffuse into interstitial fluid). Likewise, wearable heart-rate monitors (eg, Polar H10, Garmin 
Vivosmart 5) deliberately average readings over ~8 seconds (a full breath cycle) to yield a 
stable BPM instead of noisy beat-by-beat data. In such cases, trying to force faster updates 
would either deliver no new information or produce meaningless noise. This cadence is a 
deliberate design choice to produce a stable and clinically meaningful reading. 
 
Attempting to sample more frequently than this natural cadence would be counterproductive. 
For instance, a CGM polling for updates every second would not yield new information, it 
would simply return the same reading for five minutes while needlessly draining the sensor's 
battery. For a heart rate monitor, it would deliver a stream of noisy data that is less useful for 
tracking fitness or health trends. Therefore, the “near-live” taxonomy classification can be 
evidence of a well-designed system that has optimised its architecture to match the physical 
reality of the data source. 

4.2.2 Digital cadence 
In purely digital contexts, platforms often impose cadence artificially for stability. For 
example, high-frequency trading APIs (Alpaca with ~20ms updates, Tradier ~60ms) enforce 
strict rate limits on requests. In these cases, using a push-based direct streaming model is 
essential for real-time updates. Without this, any attempt at millisecond polling would be 
throttled by the platform’s rules. 

4.2.2.1 Rate limits and sampling intervals 
Rate limits control how many requests a client can make in a specific period.89 These are 
necessary mechanisms for ensuring system stability and fair access, as they prevent any 
single user from overwhelming the platform's servers with too many requests in a short 
period.90 For example, poorly configured or malicious application could send millions of 
requests without these limits being in place. This would consume a disproportionate amount 
of server resources like network bandwidth.  
 
Rate limits are particularly visible on many of the implementations we have examined like X 
(Twitter), Slack, and Charles Schwab. The Charles Schwab Trader API limits market data 
requests to 120 per minute, while the X API limits timeline requests to 900 per 15-minute 
window. Similarly, Slack’s API has multiple tiers, with most methods allowing between 
20-50+ requests per minute. In particular, these limits guide developers away from 
high-frequency polling. 
 
This architecture contrasts sharply with the “push" models, which are designed to bypass 

90 https://raghavan.usc.edu/papers/drl-sigcomm07.pdf  
89 https://www.cloudflare.com/en-gb/learning/bots/what-is-rate-limiting/  



this problem entirely. Instead of the client repeatedly asking for data and hitting rate limits, 
the server automatically pushes updates as they happen, better enabling a truly live data 
stream. However, a "pull" model is still chosen for important trade-offs. It gives the client full 
control over when to request data and is significantly more efficient for conserving resources 
like device battery life. This often makes it a deliberate choice when achieving real-time 
speed is not the primary goal (eg, Dexcom G7). 

4.2.2.1 Mutability 
Finally, the mutability of data can introduce complexity.91 92 For an “immutable” stream like 
stock ticks, new data is simply appended. This is true for the brokerage APIs from Alpaca 
and Tradier, where each new stock price is a new, unchangeable fact. It's also true for health 
sensors like the FreeStyle Libre 3 or a Polar heart rate monitor; a glucose or heart rate 
reading from a minute ago is a historical measurement that cannot be altered. In these 
cases, the challenge is to deliver new data as fast as possible. The architecture is optimised 
for a one-way flow of information. 
 
However, on platforms like Slack, messages can be edited or deleted (ie, “mutable”). This 
creates a complex cadence of “CREATE”, “UPDATE”, and “DELETE” events, shifting the 
architectural challenge from simply delivering new data to synchronising all changes in 
real-time. Interestingly, many of the systems with higher latency in our study (Slack, X, Plaid, 
Yodlee, Gmail, etc.) allow records to be edited or deleted after creation, unlike simpler feeds 
that only ever append new data. A message can be edited, a transaction status can be 
updated from "pending" to "cleared," or an email can be deleted. This creates a complex 
cadence of events beyond just "new data." To illustrate, being "real-time" here can mean: 

● Delivering new messages quickly. 
● Delivering edits to old messages just as quickly to all users. 
● Delivering deletions of old messages to ensure they are removed from everyone's 

view instantly. 
 
This means the system has to keep every user’s view fully in sync, not just deliver new 
items. Any lag or failure in synchronising changes could, for example, cause someone to see 
and reply to a message that was already deleted, or act on a transaction status that’s 
outdated. Handling new events in addition to edits and deletions in real time adds complexity 
(and with it, some latency) compared to a simple append-only feed. 
 
To conclude, designing continuous and real-time data transfers around a data source's 
intrinsic cadence can help to i) ensure data quality by respecting physical limits, ii) maintain 
system stability via rate limits, or iii) preserve the integrity of mutable data. In other words, 
the fastest possible architecture is not always the most effective, as optimising for a data 
source's 'natural rhythm' ensures the information is meaningful, stable, and reliable. 

4.3 Interoperable standards 
The relationship between interoperability, open standards, and latency is also complex. 
Certain open standards (IMAP IDLE for email, JMAP, WebSockets, etc.) were created so 

92 https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43864.pdf  
91 https://www.barroso.org/publications/TheTailAtScale.pdf  



that any third-party app can get updates without constant polling.93 For instance, IMAP IDLE 
lets an email server instantly notify a client when a new message arrives, and Slack/Discord 
use standard WebSocket connections to push events to external apps in real time. Open 
standards eliminate the need for each service to poll continuously, allowing low-latency 
updates across a diverse ecosystem of apps through a common protocol. 
 
The Open Data Institute (ODI) argues that key parts of our data infrastructure (including 
identifiers, standards, and registers) should be treated as public goods.94 From this 
perspective, standards like IMAP or open protocols for financial data are foundational 
components of a shared infrastructure that enables competition and innovation.95 Closed, 
proprietary ecosystems may achieve marginal performance gains by avoiding the overhead 
of interoperability. Yet, this can come at the cost of a less dynamic and more concentrated 
market. 

4.3.1 The counterfactual of closed ecosystems 
Finally, we note that closed, vertically integrated ecosystems can sometimes achieve the 
absolute lowest latency. For example, the fastest solutions we examined (such as Medtronic 
and Garmin’s sensor systems) tightly control every component (from hardware through cloud 
to app) and avoid any third-party handoffs. This end-to-end integration can help to eliminate 
the overhead of interoperability, squeezing out extra milliseconds of delay.96 Conversely, 
when the goal is to work across a diverse open ecosystem of apps and devices, using open 
standards is crucial for compatibility, even if it introduces a bit more latency.  
 
In essence, there is a trade-off. Namely: i) maximum speed can be attained through a 
self-contained design in certain contexts, whereas ii) achieving real-time data transfers 
across a diversity of applications benefits from an easily-accessible, common language (ie, 
open and interoperable standards). 

5. Concluding remarks 
This report has aimed to bring clarity to the "continuous and real-time" data portability 
mandates emerging in digital competition policy by introducing a new taxonomy and the 
concept of Functional Real-Time. In this way, our analysis is intended to be descriptive (ie, a 
map of how real-time data transfers work in practice) rather than normative. 
 
A key finding is that a one-size-fits-all standard for "real-time" is impractical. Context is 
paramount, and latency is often the result of deliberate and sometimes necessary trade-offs. 
We observed that many implementations fell short of their Functional Real-Time thresholds, 
not because of technical limitations, but because of architectural choices that prioritise other 
valuable goals. 
 

96 
https://assets.publishing.service.gov.uk/media/5a75c284e5274a545822e01a/The_economics_of_ope
n_and_closed_systems.pdf  

95 https://theodi.org/news-and-events/blog/data-as-a-strategic-asset/  
94 https://theodi.org/insights/guides/principles-for-strengthening-our-data-infrastructure/  
93 https://policyreview.info/pdf/policyreview-2024-2-1749.pdf  



Furthermore, the taxonomy developed in this report provides a common language for these 
factors. Together with the FRT framework, this highlighted a range of factors likely affecting 
the degree of "real-time", such as: intermediary analytical layers to enrich data, intentional 
delays to ensure security and manage complexity at scale, and the inherent overhead 
required to support open, interoperable standards over closed ecosystems. Furthermore, the 
intrinsic physical or digital cadence of the data source itself often sets a hard limit on how 
"live" a data transfer can meaningfully be. 

5.1 Implications for competition policy and enforcement 
The findings and frameworks presented here have direct implications for the implementation 
and enforcement of digital competition laws like the DMA. 

1. For compliance assessments: Regulators can use the taxonomy as a checklist to 
assess a gatekeeper's data portability implementation. For example, an architecture 
that relies solely on a "pull" model with "periodic" updates for dynamic data (like 
social media posts) might fail a functional real-time test, suggesting a possible 
compliance failure. 

2. For remedy design: The FRT framework provides a defensible, context-aware 
method for setting latency requirements in remedial orders. Rather than mandating 
an impossible "absolute" real-time, orders can specify that data must be delivered 
within the FRT threshold for its use case (eg, 100ms for messaging, 5 minutes for 
glucose data). 

3. For distinguishing legitimate from anti-competitive delay: The taxonomy helps 
identify when latency is a legitimate trade-off (eg, for security or data enrichment) 
versus when it is a deliberate tactic to undermine portability. A deliberate, 
non-technical delay like the Dexcom G7's 3-hour API lag, which is not applied to its 
own first-party app, could be scrutinised as a potential violation of the DMA's spirit 
and letter. 

4. For promoting interoperable standards: The analysis suggests that while closed 
ecosystems can achieve the lowest latency, open standards are crucial for a dynamic 
and competitive market of third-party services. Policymakers should consider 
mandating support for open, push-based standards (eg, WebSockets, JMAP) to 
ensure a level playing field. 

5. For cross-jurisdictional learning: The taxonomy and FRT framework provide a 
common language and evaluation metric for regulators in the EU, UK, US, Japan, 
and other jurisdictions considering DMA-style rules. This can help harmonise 
compliance expectations for global gatekeepers and create a shared evidence base 
for what constitutes effective real-time data portability. 

 
Building on this work, policymakers and developers can move beyond an absolutist view of 
speed by using the combined toolkit of the taxonomy and the FRT framework. Instead, they 
can engage in a more nuanced evaluation of data portability solutions, ensuring that data 
flows are fast but ultimately fit for purpose. 



Annex A. Methodology 

Use case selection 
The use case areas, use cases and implementations were selected to provide a broad and 
representative sample of user-initiated and user-consumed personal data transfers. This 
approach was chosen to distil generalisable principles about what "continuous and real-time" 
means across a diverse set of common applications. 

Use case area screening criteria 
a. User-oriented data? We restrict to data that end users generate through their own 

activity and can lawfully port to themselves or authorised third parties. This directly 
tracks the DMA’s obligation on gatekeepers to provide “effective portability […] 
including continuous and real-time access” for end users and authorised third parties, 
via appropriate technical measures (eg, APIs). Selecting user-oriented data keeps 
the study aligned to the DMA’s target of end-user data access and real-time 
portability.97 
 
Sensitive data? Priority is given to domains where misuse or delay has higher risk 
(eg, health and financial contexts). Health data is expressly a GDPR special category 
requiring enhanced protections; analysing real-time portability where safeguards are 
strictest stress-tests policy and implementation. Financial data, while not a GDPR 
special category, is widely treated by regulators as high-risk in breach contexts, 
warranting heightened controls; examining it surfaces real trade-offs between speed, 
safety and consent.98 
 
Diverse data? We attempted to study across domains and data types (eg, 
physiological signals, transactions, communications) to derive a taxonomy general 
enough for policy use beyond a single sector. We intentionally selected cases that 
are as different as possible to reveal cross-cutting patterns between different data 
types. In the portability context, diversity improves external validity and supports 
competition/empowerment aims highlighted in recent OECD work. 

Use case screening criterion 
b. Consumer application? Within each area, we include only consumer-facing 

applications where a user (or a third party they authorise) actually consumes the data 
stream. This keeps the analysis focused on portability as a practical right and 
competition lever for end users, rather than back-end M2M/IIoT integrations. In turn, 
this operationalises the DMA’s end-user portability mandate (real-time and 
continuous access “to data provided by the end user or generated through the 
activity of the end user”) and ties findings directly to potential enforcement 
scenarios.99 

99 https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX%3A32022R1925  
98 https://gdpr-info.eu/art-9-gdpr/  
97 https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX%3A32022R1925  



Implementation screening criteria 
c. Adoption: The chosen implementations have significant user adoption or are 

considered industry standards, making the analysis relevant to a large segment of 
the market. Niche or obscure technologies were avoided. 

 
Availability of technical specifications: An important requirement was the public 
availability of technical specification documents, API documentation, or detailed 
technical descriptions. This was essential to enable an evidence-based classification 
of each implementation against the taxonomy dimensions. 

Functional Real-Time (FRT) framework 
The FRT framework is a conceptual adaptation of Maister's First Law of Service, which 
posits that customer satisfaction is a function of the gap between perception and 
expectation, often expressed as:  
 

Satisfaction = Perception - Expectation100 
 
This psychological principle is translated into a simple quantitative framework for evaluating 
data transfer latency. In this model, "Perception" is analogous to Immediacy, the technical 
threshold at which a system's response feels instantaneous to a human user. "Expectation" 
is analogous to Timeliness, the context-dependent requirement for how quickly data must 
be delivered to be useful for a specific task. This relationship is formalised in a metric called 
the Real-Time Surplus (RTS), calculated as: 

 
RTS = Immediacy - Timeliness 

 
The RTS score provides a clear, quantitative basis for determining whether a system's 
real-time performance is limited by human perception or by the inherent constraints of the 
process itself. The credibility of the FRT framework rests on the evidence-based definitions 
of its two core components: 

1. Immediacy (perception): Immediacy is defined as the perceptual threshold for an 
"instant" response. This value is benchmarked at 100ms, based on the foundational 
usability research of Jakob Nielsen.101 This body of work establishes that 100ms is 
the cognitive limit for a user to feel that they are directly manipulating an on-screen 
object and that the system is reacting instantaneously. While some specialised 
research has identified lower perception thresholds for specific, highly sensitive tasks 
like direct stylus input, the 100ms standard remains the most widely accepted and 
empirically robust benchmark for general human-computer interaction. Anchoring 
Immediacy to this principle provides a stable, evidence-based reference point for all 
use cases where the user's perceptual experience is the primary consideration. 

2. Timeliness (expectation): Timeliness is defined as "the shortest meaningful interval 
at which a phenomenon can be observed or reported without distortion." This value is 
inherently context-dependent and must be justified by the physical, physiological, or 
logical constraints of the specific use case. For each use case area in this study, a 

101 https://www.nngroup.com/books/usability-engineering/  
100 https://www.humanfactors.com/newsletters/are_we_there_yet_effects_of_delay.asp  



Timeliness value was established through a review of relevant technical and scientific 
literature: 

a. Continuous Glucose Monitoring (CGM): Timeliness is set at 5 
minutes (300,000ms). This is determined by the hard physiological limit 
of glucose transport from blood capillaries to the interstitial fluid where 
sensors take their measurements. Sampling more frequently would yield 
no new information.102 103 104 105 

b. Heart Rate Monitoring (HRM): Timeliness is set at 8 seconds 
(8,000ms). This reflects the clinical requirement to average beat-to-beat 
intervals over at least one full respiratory cycle to produce a stable and 
meaningful beats-per-minute (BPM) reading, filtering out natural 
arrhythmia.106 107 108 109 110 

c. Digital communications (Finance, Messaging, Mail): Timeliness is set 
at 15ms. This value represents the physical limit of network technology, 
benchmarked against the lowest reported Verizon intra-Europe round-trip 
time (RTT). It represents the fastest possible data transfer, abstracting 
away from application-level or systemic delays. 111 112 113 

 
The dual-component nature of this framework resolves the central tension between the 
DMA's ambitious "real-time" mandate and the practical realities of data generation and 
transfer. It allows for a fair assessment by distinguishing between systems that are 
technically capable of being instantaneous (eg, financial data transfer) and those that are 
limited by immutable physical constraints (eg, physiological monitoring.) 

Interpreting RTS and determining the FRT threshold 
The final FRT threshold for a given use case is determined by the RTS score, providing a 
clear logic for setting a defensible performance benchmark. 
● If RTS is positive (Immediacy > Timeliness), the use case is perception-limited. The 

physical process is faster than human perception. Therefore, the FRT threshold is set 
by the higher standard of Immediacy (100ms). 

● If RTS is negative (Timeliness > Immediacy), the use case is process-limited. An 
inherent delay in the underlying phenomenon is much longer than the threshold for 
human perception. Therefore, the FRT threshold is set by the more lenient standard of 
Timeliness. 

 

113 https://cdn.cabling-design.com/media/43612/64fd4fcf62bcd0.10037069.pdf   

112 
https://www.netforecast.com/wp-content/uploads/2022-Internet-Latency-Report_NetForecast_NFR514
9.pdf 

111 https://www.verizon.com/business/terms/latency/ 
110 https://pubmed.ncbi.nlm.nih.gov/25252274/  
109 https://pmc.ncbi.nlm.nih.gov/articles/PMC6679242/ 
108 https://pubmed.ncbi.nlm.nih.gov/8598068/ 
107 https://www.ncbi.nlm.nih.gov/books/NBK549803/ 
106 https://arxiv.org/abs/2306.07730 

105 https://pmc.ncbi.nlm.nih.gov/articles/PMC3005050/  
104 https://pubmed.ncbi.nlm.nih.gov/31059282/ 
103 https://pubmed.ncbi.nlm.nih.gov/26243773/ 
102 https://pubmed.ncbi.nlm.nih.gov/24009261/ 



This logic allows for nuanced, contextually appropriate judgments. For example, a brokerage 
app with a 500ms latency would fail its FRT test, as this is well above the 100ms Immediacy 
threshold. In contrast, a continuous glucose monitor that delivers data every minute is well 
within its 5-minute Timeliness threshold and would therefore be considered functionally 
real-time for its purpose. Using this tool, we provide the FRT thresholds in Table 2. 
 
Table 2. RTS scores and FRT threshold for each use case 

Use case 
area 

Immediacy 
(ms) 

Timeliness 
(ms) 

RTS 
calculation 
(ms) 

Limiting 
factor 

Final FRT 
threshold 

Blood Glucose 
Monitoring 

100 300,000 -299,900 Process 5 minutes 

Heart Rate 
Monitoring 

100 8,000 -7,900 Process 8 seconds 

Budgeting 
Apps 

100 15 +85 Perception 100 
milliseconds 

Brokerage 
Apps 

100 0.011 +99.989 Perception 100 
milliseconds 

Messaging & 
Social Media 

100 15 +85 Perception 100 
milliseconds 

Mail & 
Calendar 
Sync 

100 15 +85 Perception 100 
milliseconds 

 
The process for selection of the use case area, use case, implementations and the FRT 
assessment are summarised below in Figure 8. 
 
Figure 8. Methodology workflow 



 

 



Annex B. Taxonomy placement 
Table 3. Continuous and real-time data transfer taxonomy 

Criteria Subcriteria Implementations 

1. Where is data 
sharing initiated by 
the user? 

Initiated from the 
source platform 

Garmin The Vivosmart 5 API 
Fitbit (Charge 5/Sense) API 

Initiated from the 
third-party 
application 

Plaid Webhooks 
Yodlee Webhooks 
TrueLayer 
Charles Schwab Trader API 
Alpaca Markets API 
Tradier API 
Discord API 
X Filtered Stream API 
Slack Events API 

Initiated from 
on-device pairing 

Dexcom G7 
FreeStyle Libre 3 Sensor 
Medtronic Guardian Connect 
Polar H10 (via BLE) 

2. What is the data 
pathway? 

On-device hub FreeStyle Libre 3 
Medtronic Guardian Connect 
Abbott Lingo 
Garmin Vivosmart 5 

Direct connection Polar H10 
Fitbit 
Charles Schwab Trader API 
Alpaca Markets API 
Tradier API 
Discord API 
X (Twitter) API v2 
Slack Events API 
Fastmail (JMAP) 
Dovecot (IMAP) 

Intermediary hub Dexcom G7 
Plaid Webhooks 
Yodlee Webhooks 
TrueLayer 
Gmail & Google Calendar (Workspace APIs) 

3. Whose credentials? User credentials only Dovecot (IMAP) 
Polar H10 (via BLE) 

User and vetted 3rd 
party credentials 

Dexcom G7 (Dexcom API V3)  
Plaid Webhooks  
Yodlee Webhooks  



TrueLayer  
Charles Schwab Trader API  
Alpaca Markets API  
Tradier API  
Discord API  
X Filtered Stream API  
Slack Events API  
Gmail (Google Workspace API) 
Garmin The Vivosmart 5 API 
Fitbit (Charge 5/Sense) API 

On-device pairing - 
Proximity 

FreeStyle Libre 3 Sensor 
Medtronic Guardian Connect 

4. How is user consent 
obtained? 

Explicit consent via 
redirect 

Dexcom G7 (Dexcom API V3) 
Plaid Webhooks 
Yodlee Webhooks 
TrueLayer 
Charles Schwab Trader API 
Alpaca Markets API 
Tradier API 
Discord API 
X Filtered Stream API 
Slack Events API 
Gmail (Google Workspace API) 

Implicit consent via 
in-app invitation 

FreeStyle Libre 3 Sensor 
Medtronic Guardian Connect 
Polar H10 (via BLE) 
Garmin The Vivosmart 5 API 
Fitbit (Charge 5/Sense) API 
Fastmail (JMAP) 
Dovecot (IMAP) 

5. What is the duration 
of the permission? 

Time-bound Abbott Lingo 
Plaid Webhooks 
Yodlee Webhooks 
TrueLayer 
X (Twitter) API v2 
Gmail & Google Calendar (Workspace APIs) 

Open-ended Dexcom G7 
FreeStyle Libre 3 
Medtronic Guardian Connect 
Polar H10 
Garmin Vivosmart 5 
Fitbit 
Charles Schwab Trader API 
Alpaca Markets API 
Tradier API 
Discord API 
Slack Events API 



Fastmail (JMAP) 
Dovecot (IMAP) 

6. How is new data 
delivered? 

Pull Dexcom G7 
FreeStyle Libre 3 

Push Medtronic Guardian Connect 
Abbott Lingo 
Garmin Vivosmart 5 
Polar H10 
X (Twitter) API v2 
Alpaca Markets API 
Tradier API 
Charles Schwab Trader API 

Hybrid Plaid Webhooks 
Yodlee Webhooks 
Slack Events API 
Discord API 
Fastmail (JMAP) 
Dovecot (IMAP) 
Gmail & Google Calendar (Workspace APIs) 
Fitbit 
TrueLayer 

7. Can existing data be 
changed? 

Immutable 
(append-only) 

Dexcom G7 
FreeStyle Libre 3 
Medtronic Guardian Connect 
Abbott Lingo 
Polar H10 
Garmin Vivosmart 5 
Alpaca Markets API 
Tradier API 

Mutable (append 
with changes) 

Fitbit 
Plaid Webhooks 
Yodlee Webhooks 
TrueLayer 
Charles Schwab Trader API 
Discord API 
X (Twitter) API v2 
Slack Events API 
Fastmail (JMAP) 
Dovecot (IMAP) 
Gmail & Google Calendar (Workspace APIs) 

8. How frequent is the 
data? 

Live Garmin Vivosmart 5 
Charles Schwab Trader API 
Alpaca Markets API 
Tradier API 
Discord API 
Fastmail (JMAP) 

Near-live Polar H10 
Fitbit 
Plaid Webhooks 



Yodlee Webhooks 
TrueLayer 
X (Twitter) API v2 
Slack Events API 
Dovecot (IMAP) 
Gmail & Google Calendar (Workspace APIs) 

Periodic Dexcom G7 

 


