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Executive summary

The Digital Markets Act (DMA) and similar regulations globally mandate 'continuous and
real-time' data portability to dismantle data-driven barriers to entry and lower switching costs.
However, the lack of a precise definition for this requirement creates a critical ambiguity that
undermines its pro-competitive potential, leaving regulators without a clear compliance
benchmark and platforms without clear guidance. This report addresses this enforcement

gap.

To deliver this clarity, we introduce a new taxonomy for classifying data transfer systems
based on a review of 18 different implementations across 3 sectors: health, finance, and
social media. Our central finding is that "real-time" is not an absolute measure but is
context-dependent. We distinguish between "Absolute Real-Time" (the theoretical instant an
event occurs) and "Functional Real-Time" (the point beyond which further speed provides no
meaningful benefit to the user). Analysis shows that latency is often dictated not by the
intrinsic cadence of the data source (eg, physiological processes in glucose monitors) or by
deliberate architectural choices that trade speed for security, analytical value, or system
stability.

Ultimately, this research provides policymakers and enforcers with a practical toolkit to move
beyond absolutist views of speed. The taxonomy and FRT framework enable a nuanced
evaluation of compliance, ensuring that data portability remedies are not just fast, but
effective, pro-competitive, and fit-for-purpose.

' This work was supported by the Data Transfer Initiative.
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1. The policy and economic context behind
real-time data portability

The principle of data portability (an individual's right to obtain and reuse their data across
different services) has emerged as a critical instrument for driving competition across the
digital economy and is now a central obligation for 'gatekeeper' platforms under the EU's
Digital Markets Act (DMA). Here, we trace its evolution from a nascent right into a more
sophisticated policy objective mandating continuous, real-time transfers.

1.1 The economic costs of data silos: vendor lock-in and
switching costs

In digital markets, the absence of effective data portability can give rise to economic friction
in the form of vendor lock-in and high switching costs.? Vendor lock-in describes where a
customer is unable to switch from one provider to another without incurring substantial
costs.® These costs include the loss of historical data, as well as the forfeiture of established
digital identities and social networks, and even the effort required to re-learn workflows on a
new platform. Some studies suggest this dependency limits consumer choice and innovation
by smaller market players, ultimately leading to anti-competitive market structures.* ®

Yet, this potential issue can extend beyond consumers and small businesses, creating
significant burdens for larger organisations. Evidence from major buyers shows that large
and complex (particularly IT) estates become path-dependent and costly to change. The UK
CMA'’s cloud market investigation identifies factors like egress fees, technical
incompatibilities, and licensing restrictions® as material barriers to switching services for
large firms.” Some regulators are treating this issue as systemic. For instance, the EU Data
Act mandates the elimination of cloud switching and data-egress charges by 12 January
2027 for this reason.?

In the digital economy, data itself has become a primary source of lock-in.® The cumulative
value of a user's data on a platform (be it a social network's friend connections, an
e-commerce site's purchase history, or a cloud provider's stored files) creates a powerful
disincentive to migrate to new services. This "data gravity"'® effect risks trapping consumers
and their data within “walled gardens”, reinforcing the market power of incumbents and
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raising barriers to entry for new competitors."

1.2 Data portability as a potential pro-competitive policy
remedy

Data portability is a direct policy response to the economic harms of vendor lock-in. The right
to data portability means regulators aim to grant consumers the right to take their data with
them across services. In turn, reducing the aforementioned switching costs, lock-in and
dismantling the data-driven barriers that protect some incumbents from competitive
pressure.' ' Specifically, when users can easily move their data to a rival service, they are
more likely to switch in response to differentiating factors like better prices or improved
service quality. This threat of customer churn can, in theory, encourage platforms to compete
more vigorously on the merits of their offerings.

Underlying policy, the economic dynamics are complex. An empirical study by Jeon &
Menicucci (2023), using a two-period competition model, found that under certain conditions,
data portability can simultaneously increase both consumer surplus and firm profits.' This
suggests a potential win-win scenario where enhanced competition does not come at the
expense of industry viability. However, other research cautions that data portability may not
generally boost profits or welfare. Lam & Liu (2019) use a two-period entry model to show
that portability has the desired “switch-facilitating” effect (ie, it lowers switching costs), but
also may drive a “demand-expansion” effect (ie, users provide more data to incumbents
when they know it can be ported).” Where a firm hosts a strong network effect, data
portability may lead to more user data going their way, strengthening the incumbent’s
advantage, and thus the demand-expansion effect dominates.

However, Lam & Liu (2019) also point out that this demand-expansion effect can be driven
by poorly designed policy that is: i) too broad in scope (ie, covering data with high marginal
value to the incumbent but low relevance for switching); or, ii) delayed or subject to frictions
(eg, non-real-time transfers) weaken the switch-facilitating effect, but still leave the
demand-expansion effect intact. As such, the pro-competitive effect of data portability is not
guaranteed. It also depends on the specifics of its implementation. Policy design flaws
flagged by Reimsbach-Kounatze & Molnar (2024)'® concur with Lam & Liu (2019: (i) scope
drift (ie, lack of clarity around “what and whose data”); (ii) cumbersome modalities (eg,
one-off exports and unstable APls, among others); and (iii) expanded security attack
surfaces from duplicated flows. In particular, ambiguity as to what real-time means recurs

" https://journals.sagepub.com/doi/10.1177/10245294 18816525
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across work on this topic'” '® '° and is a primary reason portability can underperform.

1.3 The transition from episodic to continuous and
real-time portability in policy

Understanding of data portability has evolved, moving through generations of
implementation. The first generation, or "Data Portability 1.0," was enshrined in Article 20 of
the European Union's General Data Protection Regulation (GDPR). This landmark provision
granted individuals the right to receive their data in a "structured, commonly used and
machine-readable format" and to have it transmitted to another service provider.2’ While
important, the GDPR's framework was hampered by practical limitations. For example, data
controllers were given up to 30 days to respond to requests, which often resulted in one-off,
static data dumps. This long lead time rendered the data obsolete for many dynamic use
cases.”

These shortcomings have led to "Data Portability 3.0," a new focus on continuous, real-time,
API-based data flows. This vision is articulated in Article 6(9) of the DMA, which mandates
that designated "gatekeeper" platforms provide "continuous and real-time access" to data.
This requirement is what gives the DMA's portability provisions their pro-competitive teeth,
with continuous and real-time access being valuable here to make data portability
requirements effective in fast-moving digital markets.?? Therefore, understanding what
continuous and real-time data transfers are and what it means for them to be real-time is an
important question for both digital competition policy and the subjects of that policy.

2. A taxonomy of continuous and real-time data
transfers

Some prior work have developed taxonomies focused on the strategic business value of
real-time data initiatives?, or creating highly technical, machine-readable data models for loT

17

https://op.europa.eu/en/publication-detail/-/publication/21dc175¢c-7b76-11e9-9f05-01aa75ed71a1/lang

uage-en
'8 hitps://papers.ssrn.com/sol3/papers.cim?abstract_id=3862299
19

https://www.oecd.org/en/publications/the-impact-of-data-portability-on-user-empowerment-innovation-
and-competition_319f420f-en.html
20

https://www.researchgate.net/publication/351070025_Data_Portability between_Online_Services_An
Empirical_Analysis_on_the_Effectiveness_of GDPR_Art 20

21 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3866495

22

20data%2000rtab|Iltv%20%20and an%ZOeffectlve°/020|nstrument%20to%2030ur

= https://management-datascience.org/articles/9967/



environments.?* Crucially, regulations like the DMA do not define “continuous” or “real-time”,
and no general taxonomy of continuous, real-time data transfers yet exists.?® 2 27

The taxonomy presented here is explicitly designed for a non-technical audience
(policymakers and consumer advocates). Rather than classifying business outcomes or
low-level data structures, it categorises the observable mechanics of data-transfer systems
to establish a common practical language for how these services work.

This paper contributes to the field not only through its findings but also through its
methodology. We provide a new, replicable method for analysing the performance of data
portability remedies by developing a structured taxonomy and an FRT framework from
observational data of 18 in-market systems. This is a critical need as regulators worldwide
implement and enforce these rules.

2.1 Key definitions: what do we mean by “continuous” and
“real-time”?

Data transfer is generally defined as the movement (copying, streaming or migrating) of
digital information from one point, system or location to another.?® 2 To understand the
benefits of real-time and continuous data transfers as a key part of data portability 3.0, it is
first important to understand what we mean by these qualifiers. NIST’s glossary frames
real-time as a latency threshold dictated by the external event, not by the network alone.*

2.2 The taxonomy: how can we classify continuous and
real-time data transfers?

Defining ‘continuous’ and ‘real-time’ in practice is challenging due to diverse
implementations. We reviewed 18 implementations across six use cases and developed a
framework to classify the different approaches. Table 1 summarises the selected use cases
and implementations (see Annex A for methodology).

Table 1. Use case areas, use cases and implementations

Use case area | Use case Implementation

a) "A user wants to see their current glucose | i) Dexcom G7 (Dexcom API V3) 3
level right away and also review their broader | 2
trends automatically throughout the day."

% hitps://www.sciencedirect.com/science/article/pii/S254266052400101X

2 https://www.tu-ilmenau.de/fileadmin/Bereiche/WM/wth/Diskussionspapier Nr 192.pdf
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29 https://csrc. nlst qov/qlossarv/term/data transfer_solution

0 https://csrc.nist.gov/glossary/term/real time
31 hitps://s3.us-west-2.amazonaws.com/dexcompdf/G7/AW00046-05 UG_G7_OUS _en MMOL.pdf
32 https://developer.dexcom.com/docs/dexcomv3/endpoint-overview/




ii) FreeStyle Libre 3 Sensor®

1) lot Wearables
i) Medtronic Guardian Connect®*

b) "A user wants to watch their heart rate in i) Polar H10 (via BLE)*®

real time during exercise and check later how
their body recovered afterward.” i) Garmin The Vivosmart 5 API*

iii) Fitbit (Charge 5/Sense) API¥

a) “A user wants their budgeting app to i) Plaid Webhooks®®

update transactions immediately after they

happen, no matter which bank they used.” ii) Yodlee Webhooks™
2) Personal III) TrUELayeer
Banking & R - . 41
Finance b) "A user wants one platform to give live i) Charles Schwab Trader API

stock prices and let them trade automatically,

even if they use different brokerages.” i) Alpaca Markets API*

iii) Tradier API4®

a) “A user wants to receive alerts instantly i) Discord API#

when they’re mentioned in a message or

post, no matter where it's posted.” ii) X Filtered Stream API*®

iii) Slack Events AP|4

3) Messaging &

. . . . . 47
Social Media b) “A user wants to manage their email from i) Fastmail (JMAP)

multiple accounts (eg, work, personal) in a
single application, with new messages, event | i) Dovecot (IMAP)*

invitations, and updates appearing instantly,

regardless of which account they are sent to.” | {il) Gmail (Google Workspace

3 https://freestyleserver.com/payloads/ifu/2023/q3/ART41641-001_rev-A-web.pdf

34
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AP|)49 50

Examining each implementation’s technical documentation (referenced in Table 1.) revealed
several key factors that affect how ‘real-time’ a transfer can be. We describe these factors in
the taxonomy below, and Table 2 in Annex A maps each implementation to the taxonomy
dimensions.

2.2.1 Where is data sharing initiated by the user?

2.2.1.1 Initiated from the source platform

In this model, the user initiates the data sharing process from within the source platform's
own application or website. The user navigates through the source platform's settings or
sharing menus to select a third party and authorise the connection. This flow keeps the user
within a familiar environment, giving the source platform significant control over the user
experience and the presentation of consent.

2.2.1.2 Initiated from the third-party application

Here, the data sharing journey begins within the third-party (recipient) application. The user,
seeking to import data, is prompted by the third-party app to connect to an external source.
This typically triggers a redirect (eg, via an OAuth flow) to the source platform for
authentication and consent before returning the user to the third-party app. This model is
common for data aggregators and services that integrate with multiple sources.

2.2.1.3 Initiated from on-device pairing

In this model, the initial connection is established through a direct, localised action between
a physical device and a user's smartphone or hub. This often involves Bluetooth pairing or a
similar proximity-based protocol. While subsequent data sharing to the cloud or other apps
still requires further authorisation, the foundational link is created on-device, independent of
a web-based flow.

2.2.2 What is the data pathway?

2.2.2.1 On-device hub

In an on-device hub setup, the user’s phone acts as the relay. The user controls when data
uploads occur (eg, by opening the app or enabling Bluetooth), so update speed hinges on
the phone’s connectivity and power. If the phone is offline or the app is closed, data queues
locally and uploads later, meaning updates are only as timely as the phone’s connection
permits

2.2.2.2 Direct connection

Data moves from the source's cloud servers directly to the third party's cloud servers. Once
authorisation is granted, the service streams data or alerts as soon as it’s available. Because

4 https://developers.google.com/workspace/gmail/api/quides/push
%0 https://cloud.google.com/pubsub/docs/push




the data bypasses a user’s device, updates can be very timely; market feeds and messaging
events arrive within seconds or milliseconds of occurrence. However, sustained real-time
performance depends on an efficient mechanism for notifying clients of new data. While this
is often achieved with a persistent connection (eg, an open WebSocket®' %), it can also be
accomplished without a continuously open connection through event-driven protocols like
webhooks, which avoids the resource intensity of constant polling.

2.2.2.3 Intermediary hub

Data moves through a central intermediary that can read and process the raw data.
Intermediary hubs sit between the original data source (such as a bank) and your
application. They aggregate data from many providers and then notify integrators via
webhooks when something changes. This model offloads the complexity of polling multiple
upstream sources but introduces additional latency; the intermediary must first collect data
(often through scheduled polling) before pushing a notification, so updates may be
“near-real-time” rather than instantaneous.

2.2.3 Whose credentials?

2.2.3.1 User credentials only

The user provides their source platform login credentials (eg, username and password)
directly to the third-party application or an intermediary. The third party then uses these
credentials to log in on the user's behalf, and often gathers data through methods like
screen-scraping. This model places the burden of trust on the user's willingness to share
their information. A better approach that still only relies on user credentials is to ask the user
to generate a secret key based on their credentials, which the user can then share with the
third party without sharing their password (eg, such as is the case with GitHub®?). This is
often difficult UX%* but can work.

2.2.3.2 User and vetted 3rd party credentials

In this model, the source platform identifies a pre-registered third-party application by
validating its unique credentials (eg, a Client ID and Client Secret) during an API-driven
authentication flow, typically OAuth 2.0.%° The user also authenticates directly with the
source platform, which then issues a temporary, revocable access token that is linked to
both user and 3rd party credentials. In some implementations of this, the 3rd party must also
go through vetting processes that can examine data security practices, privacy policies, or
more.

2.2.3.3 On-device pairing - proximity

Instead of using credentials, data access is established through a secure, proximity-based
pairing process between a hardware device and a controlling application (eg, a smartphone

51 A WebSocket is a communication protocol that allows for real-time, two-way interaction between a
client (like a web browser) and a server over a single, long-lasting connection.
%2 https://developer.mozilla.org/en-US/docs/Web/API/WebSockets API

53 https://docs.qithub.com/en/actions/how-tos/write-workflows/choose-what-workflows-do/use-secrets
54 hitps://dev.to/msnmongare/how-to-add-github-secrets-easily-step-by-step-quide-3cmh

% https://oauth.net/2/




app), initiated by the user. The smartphone platform using a protocol like Bluetooth Low
Energy does not allow any random nearby device to connect, but requires user approval as
well as proximity. This initial trust relationship is foundational and confined to the local device
ecosystem.

2.2.4 How is user consent obtained?

2.2.4.1 Explicit consent via redirect

The user grants consent through a dedicated, standardised interface, typically after being
redirected from the third-party app to the source platform's domain. This flow presents the
user with a "consent screen" that explicitly lists the requesting application, the data being
requested, and the permissions required. The user must take an affirmative action, such as
clicking an "Authorise" or "Allow" button, to grant consent and be redirected back.

2.2.4.2 Implicit consent via in-app invitation

Consent is granted through a series of actions within the source or recipient application that
do not involve a standardised redirect to a consent screen. For example, a user might enter
a recipient's email address within the source app to send a sharing invitation. The recipient
then accepts this invitation in their own app or via email. Consent is implied by the user's
deliberate actions to initiate and accept the sharing link, rather than by a single "Authorise"
click on a dedicated screen.

2.2.5 What is the duration of the permission?

2.2.5.1 Time-bound

With time-bound permissions, the user’s authorisation expires after a set period. Data flows
continuously for the permitted duration, but the stream will stop unless the credential is
refreshed or a sensor is replaced. This introduces maintenance overhead and the risk of
downtime if a renewal is missed. For example, a continuous glucose monitor only delivers
real-time data until the sensor expires, and an API integration (eg, TrueLayer or Schwab)
requires periodic token refreshes to keep the feed live.

2.2.5.2 Open-ended

Open-ended permissions mean that once users approve access, the service can stream
data indefinitely (subject to user revocation). For real-time integrations (whether CGMs like
Dexcom, messaging APlIs like Slack, or trading feeds like Alpaca), this eliminates
token-refresh overhead and reduces the risk of missed updates. Developers still need to
manage key security, but the data flow itself can remain continuous and uninterrupted for
months or years.

2.2.6 How is new data delivered?

2.2.6.1 Pull

In a pull model, the client periodically asks the server for updates. This can be done on a
recurring schedule or using more efficient methods like long polling. This gives developers



full control over when data is retrieved, but it also means there can be gaps between the
moment data is available and when it’s actually fetched. Frequent polling can approximate
“real-time,” but doing so increases network usage and power consumption.

2.2.6.2 Push

In pure push systems, data is delivered automatically as soon as it's generated. This can be
in the form of discrete data packages (eg, a single new post) or as a continuous live stream
of data over a persistent connection. This produces very fresh information with minimal
delay, ideal for alerts or market feeds. However, it depends on maintaining an open
connection (WebSocket or BLE link), and interruptions in connectivity will pause the stream
until reconnected.

2.2.6.3 Hybrid

Hybrid systems combine push and pull methods. In most cases, we examined, the service
sends a quick natification (push) to alert clients that new data is available, and the client then
retrieves the full data (pull). This reduces unnecessary polling while still giving timely alerts.
Either way, there can be a small delay between the initial data availability and when a client
obtains the full data, but overall latency remains low and network overhead is reduced
compared with constant polling.

2.2.7 Can existing data be changed?

2.2.7.1 Immutable (append-only)

For systems where data is append-only, new records are added, but old ones cannot be
changed or deleted. New readings or events simply add to a growing timeline, and there is
no need to handle corrections or deletions. This simplifies real-time processing because
listeners can process incoming data immediately and trust that history won’t change.
However, if a sensor or market feed produces an erroneous value, consumers have to
correct it themselves since the source never retracts or edits past data.

2.2.7.2 Mutable (append with changes)

In mutable systems, a message, transaction or event can later be edited, deleted or have its
status updated. New records are added, and existing ones can be updated or deleted.
Real-time consumers need to handle correction and deletion messages and reconcile
updates with previously stored data. This introduces extra complexity as clients must
maintain a local cache and listen for “change” notifications to keep it accurate. While updates
ensure accuracy, they can also create brief discrepancies between what was seen in real
time and the corrected record.

2.2.8 How frequent is the data?

2.2.8.1 Live

Live systems deliver data almost instantly as it's generated. Market feeds and sensor
streams fall into this category; once a WebSocket or BLE connection is open, every new
heartbeat or trade is pushed down the wire with minimal buffering. This enables true



real-time applications (there’s virtually no delay), but this depends on maintaining a
persistent connection and keeping devices powered and connected.

2.2.8.2 Near-Live

Near-live systems provide reasonably timely data, often every minute or every few minutes.
Physiological sensors like Libre, Guardian and Lingo fall into this bucket; they send readings
at one- or five-minute intervals. Many webhook-based services alert clients shortly after a
change occurs, but a brief polling or processing delay means these updates are
near-real-time rather than truly instantaneous. In practice, this cadence is sufficient for most
applications despite not being absolutely live.

2.2.8.3 Periodic

In periodic systems, new data doesn’t arrive continuously but in batches after a fixed delay.
For example, Dexcom'’s three-hour delay means that software relying on the public API sees
glucose values hours after they’re recorded. This model may be acceptable for retrospective
analysis or low-urgency tasks, but it precludes real-time monitoring.

All of these dimensions raise a fundamental question: what does it mean for a data transfer
to be ‘real-time’ in practice? NIST’s definition gives a clue by tying real-time to the timing of
the external event (not just network speed), but it doesn’t tell us how to determine if a given
solution meets the real-time bar.

2.3 Reflections on real-time: What do we mean?

As discussed, this question of what constitutes “continuous and real-time” data access
creates significant challenges for both policy implementation and compliance. Namely, it
leaves both regulators and regulated entities without a clear benchmark for what constitutes
an acceptable level of performance. This section addresses this definitional problem directly,
arguing that a context-aware framework is essential for bringing clarity to the concept of
real-time.

2.3.1 Absolute vs functional real-time

A continuous and real-time data transfer is not cannot be real-time in an absolute sense. Its
real-time-ness is a function of latency relative to a specific context. Here we can distinguish
between two key concepts:

e Absolute real-time (ART): The theoretical, instantaneous moment an event occurs.
This is a physical limit that is impossible to achieve in practice.

e Functional real-time (FRT): The point of diminishing returns, beyond which further
reductions in latency are no longer perceptible or meaningful to the user for a given
task. For instance, a video call that already feels instantaneous may not benefit from
further speed improvements.

At the most trivial level, signals cannot arrive before they are sent. Even in fibre-optic cables,
light pulses travel through the fibre-optic medium much more slowly than through a



vacuum.*® Physical limits (like the speed of light through fibre) impose a floor on latency,
which is a propagation delay that cannot be eliminated.>” Once such limits dominate the total
delay, improving processor speeds or protocols yields only marginal gains in end-to-end
latency. This aligns with Amdahl’s Law: the speed-up from any improvement is limited by the
portion of the process that can’t be accelerated.®® In other words, if an event itself only
occurs every 5-10 minutes, no technology can produce the data faster than (or at the exact
same time as) that natural 5-10 minute cycle, at best, the system can only approach this
limit.

Together, this suggests that as you approach the moment of the event, each improvement
shaves off smaller and smaller slices of latency because the remaining delay is dominated
by unoptimisable components (eg, the time it takes light or glucose molecules to travel in
related events). Therefore, the curve for improving the performance (ie, lowering the latency)
of continuous and real-time data transfers bends towards, but never crosses, the ART
boundary. But, it may cross the FRT boundary. That is, if the remaining delay falls below the
threshold of human perceptual limits (or their expectations about the rate at which an event
happens), additional speed adds little or no practical benefit for the experience of an end
user.

Putting these concepts together, we can compile the graph shown in Figure 1. This
illustrates the conceptual relationship between latency and the effort required to improve it:
e The vertical Y-axis represents Performance in terms of lower latency. The top of the
axis is zero latency (instantaneous), with delay increasing towards the bottom. The
scale is presented conceptually like a logarithmic scale, which allows for better visual
distinction between very fast response times (eg, 20 milliseconds vs. 500
milliseconds) that would otherwise be clustered together at the top of a linear scale.
e The horizontal X-axis represents Effort. This can be understood as the cumulative
investment (eg, engineering time, financial cost, architectural complexity) applied to
reduce latency.

The curve's shape illustrates the principle of diminishing returns, consistent with Amdahl's
Law. Initial improvement efforts yield significant reductions in performance, but as the
system gets faster, the same amount of effort produces smaller and smaller gains as it
approaches fundamental physical or intrinsic limits.

Figure 1. FRT Framework
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3. Findings: real-time in practice

We surveyed public documentation (and developer discussions, where needed) for a range
of digital services and plotted their end-to-end propagation delays on our Figure 1 curve.
From financial APIs to wearable health sensors, this lets us see what a practical functional
real-time benchmark looks like across sectors.

Also, we focus on evidence for the best-case scenario, end-to-end propagation delay,
assuming user data is being shared with a third party for some purpose. This is to ensure
that our findings are relevant for prospective regulatory compliance purposes (eg, a private
company sharing a continuous and real-time stream of x data for y purpose.)

Lastly, we focused on each system’s best-case end-to-end delay (ignoring outliers and
assuming optimal conditions) to align with potential regulatory compliance scenarios. Where
exact data was unavailable, we chose an estimate. We ensure that even the lowest estimate
puts this implementation on one side of the FRT threshold, ensuring our comparisons are
meaningful. (See Annex A. for details on determining the FRT level in each case.)

3.1 Use case: blood glucose monitoring

In this use case, continuous glucose monitoring systems are inherently limited by a
physiological delay of at least 5 minutes between blood glucose changes and interstitial
fluid measurements. We set the FRT level accordingly.

Dexcom G7 (API): The official API is intentionally delayed by ~1 hour (3 hours outside the
US)*® possibly as a policy choice to provide high quality analytics.®® Thus, any thirdparty app
using the public API sees at least a ~1 hour propagation delay, even though Dexcom’s own
app/receiver updates on a near-real 5-minute cycle (a latency not offered via the public API.)

% hitps://developer.dexcom.com/docs/dexcomv3/endpoint-overview/
8 https://forum.fudiabetes.org/t/dexcom-developer-api-now-live/2059




Abbott Libre 3: Streams a new glucose reading every 1 minute to the user’s phone, and
integrated apps can relay that data almost immediately.®” Under ideal conditions, the
end-to-end delay to an authorised third-party service is on the order of ~1 minute (dominated
by the sensor’s one-minute sampling interval, with only a few seconds added for
transmission).

Medtronic Guardian Connect: Generates a new reading every 5 minutes and pushes it to
the phone immediately.®? In the best case (forwarding each reading without delay), a
third-party service can receive data in ~5 minutes end-to-end. As with other sensors, the
frequency of measurement (5 min) dictates the latency; only a few seconds are added in
transit.

Figure 2. Functional real time across CGM monitoring implementations
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3.2 Use case: heart rate monitoring

In this use case, wearable heart-rate monitors must average beat-to-beat intervals over
approximately one full respiratory cycle (~8 seconds) to produce a stable and meaningful
BPM reading. So, we set the functional real time lower bound at this level.

Polar H10 (BLE): Streams heart-rate data packets covering ~0.5s of readings at a time,
arriving on the phone essentially in real time.®® In optimal conditions, the phone receives
data in under 1 second, so we estimate ~0.5s as a best-case propagation to a thirdparty (if
the app forwards data instantly.) Garmin Vivosmart 5: Provides a real-time heart-rate
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stream to the phone via its software development kit (SDK).% If an app immediately relays
this data to a server, documentation indicates ~1 second end-to-end is achievable®
(assuming the data isn’t waiting for Garmin’s cloud, which can add minutes of delay.)

Fitbit Charge 5 / Sense: Captures heart-rate data at 1 second granularity®®, but uploads that
data only when the smartphone app syncs (eg, when opened, or occasionally in
background). With the app open and forwarding data immediately, a best-case end-to-end
delay of only a few seconds (~2 s) is achievable.®” However, if the app isn’t actively syncing,
data might not be uploaded for minutes or even hours until the next sync.

Figure 3. Functional real time across HRM monitoring implementations
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3.3 Use case: budgeting apps

In this use case, financial data aggregation can, in principle, propagate new transactions
within the physical network limit of ~15ms round-trip time (RTT), meaning observed delays
are caused by factors other than technical constraints. Since this is below the perceptual
threshold for an “instant” response, we adopt Nielsen’s 100ms limit as the FRT benchmark.

Yodlee (bank webhooks): Yodlee reports that webhook events are typically received ~5
minutes after the triggering user action, so ~5 min is the best-case latency for updates.®®

8 https://developer.garmin.com/health-sdk/questions-answers/
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Plaid (transaction webhooks): Plaid’s docs state that an “INITIAL_UPDATE” webhook
usually fires ~10 s after a new transaction, and a “HISTORICAL_UPDATE” within ~1 min.%®
We take these as best-case latencies from the transaction event to the webhook. (Plaid’s
ongoing updates, however, only pull data a few times a day unless manually refreshed, so
day-today latency depends on the refresh schedule and the bank involved.)

TrueLayer (instant payouts): An instant payout executes within a few seconds (SEPA
Instant <10 s; Faster Payments ~instant).”” "' TrueLayer sends a webhook once the payment
is marked “executed”.” In ideal conditions (instant-capable banks, no risk checks, good
network), we estimate ~2 s from initiation to webhook reception. (External factors like bank
support or fraud checks can introduce additional delays.)

Figure 4. Functional real time across budgeting implementations
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3.4 Use case: brokerage apps

Note: While brokerage APIs are widely known for streaming public market data like stock
prices in real-time, they are fundamentally tools for personal data portability. They transmit
sensitive, user-specific information, including personal account balances, portfolio positions,
and trade execution confirmations (successes or failures). Therefore, the performance of
these APIs is critical for managing personal financial data and falls squarely within the scope
of this analysis.

In brokerage trading, data feeds can run at ultra-low latency, on the order of microseconds in
co-located systems. These speeds are well below human perception thresholds, so we

89 hitps://plaid.com/docs/transactions/webhooks/
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again use ~100ms as the functional real-time benchmark.

Schwab streaming API: Described as delivering updates in “up-to-the-second” time.” In
practice, documentation implies a best-case latency of about 0.5s from market update to
client™ under optimal conditions (stable connection, highest priority streaming). Schwab calls
this feed real-time™ but offers no strict latency SLA. So, ~500ms is an inferred best case
(with occasional network or rate-limit delays causing slower updates).

Alpaca API: Streams most market updates in as little as ~20ms’® (aside from rare outliers,
eg, a delayed bar arriving ~30s late due to late trade reports).

Tradier API: Streams quotes essentially as they happen’”; unofficial reports suggest ~60 ms
typical latency™. Neither Alpaca nor Tradier publishes a strict SLA, but in both cases we
assume sub-second latency in the best case under normal conditions.

Figure 5. Functional real time across brokerage implementations
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3.5 Use case: messaging & social media

In this use case, modern messaging and social media platforms are capable of delivering
events in tens of milliseconds over optimised streaming protocols. Since this is below the
perceptual “instantaneous” threshold, we apply Nielsen’s 100ms limit as the FRT reference
point.

3 hitps://www.schwab.com/execution-quality

4 https://allensarkisyan.qgithub.io/schwab-td-ameritrade-streamer/td-streamer/
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Slack Events API: No official latency SLA (Slack only requires that apps ack events within 3
s).” In practice, events are pushed immediately when they occur, anecdotal evidence
suggests around ~300 ms end-to-end.®’ We use ~0.3 s as the inferred best-case latency for
Slack’s event delivery.

Discord Gateway: Events on a persistent WebSocket typically arrive in the 30-300 ms
range on a good connection.®’ There’s no official latency promise, but ~30 ms can be
considered an ideal-case scenario.

X (Twitter) Filtered Stream: This is currently the fastest feed offered by X, real-world
reports show roughly ~5 s from a tweet’s creation to its delivery to the client®? under good
conditions. (X provides no guaranteed latency; ~5 s is an inferred best-case, with actual
speed varying based on filters, load, etc.)

Figure 6. Functional real time across social media implementations
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3.6 Use case: mail

In this use case, calendar synchronisation can propagate changes within tens of
milliseconds on a push-capable protocol. Given this is faster than the perceptual 100ms limit,
we use Nielsen’s definition of “instantaneous” as the relevant FRT level.

Fastmail (JMAP): With an active push connection, Fastmail delivers mailbox updates
almost instantaneously. Fastmail’'s own reports and user anecdotes indicate new-mail

™ hitps://docs.slack.dev/apis/events-api/
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81
https://javadoc.io/doc/org.javacord/javacord-api/3.1.0/org/javacord/api/DiscordApi.htmli#getlL atestGate
waylatency—

82 https://devcommunity.x.com/t/filtered-stream-delay/245941




notifications often arrive within ~1s in best cases.® 8 Any longer delays usually stem from
extra processing (spam filters, mailbox locks) rather than the push protocol itself.

Dovecot IMAP (IDLE): By design, Dovecot throttles new-mail alerts with a ~0.5 s debounce
(delay) before notifying clients.®® This sets a best-case latency floor of roughly half a second
(plus minimal network transit). Some servers have eliminated or reduced this builtin delay®®,
achieving a few hundred milliseconds in practice. With no official latency SLA from Dovecot,
~0.5s is an inferred best-case for near-instant IMAP notification.

Gmail push (Pub/Sub): Google provides no strict latency guarantee, describing its Pub/Sub
notification service only as “near-real-time.” Actual performance varies with server locations
and load. One measurement by a developer found ~300ms to be an achievable bestcase
latency when the Pub/Sub system is fully warmed up and publisher/subscriber are in the
same region.®’

Figure 7. Functional real time across email implementations
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4. Discussion: factors affecting real-time

4.1 Intermediary processes

4.1.1 Managing complexity and ensuring security

Many implementations that fall short of the FRT speed do so by design, intentionally trading
speed for safety and managing scale. For example, aggregators like Yodlee (~5 min latency)
and Plaid (~10s) use an intermediary-hub and hybrid model that slows data transfers down
but vastly eases integration. These intermediaries® handle thousands of different bank
connections, secures sensitive credentials, and perform fraud checks. Directly connecting to
every bank’s APl would be impractical. Services like Plaid or Yodlee act as universal
adapters, offering one unified interface at the cost of some latency.

Similarly, instead of pushing updates directly to every client, Gmail offloads that burden to a
cloud intermediary (Google Cloud Pub/Sub). This design adds a slight delay but allows
Gmail to reliably fan out huge volumes of notifications globally without maintaining countless
individual WebSocket streams. Smaller platforms like Slack or Discord handle real-time
events with direct server-to-client WebSockets, but at Gmail’s scale an intermediary service
is necessary to achieve stability and reach.

4.1.2 Adding analytical value

Sometimes a deliberate processing delay is built in to add value. For instance, the X (Twitter)
Filtered Stream still delivers data via a direct API connection, but under the hood it runs
incoming tweets through moderation and enrichment pipelines. This internal ‘intermediary’
step adds latency by design, yielding a safer and richer feed than a raw firehose.

Similarly, Dexcom G7 acts as its own intermediary for third parties. Namely, the device’s
cloud service delays data by >1 hour specifically to provide a retrospective/trend data
service, rather than a live feed. In contrast, other CGMs like Libre 3 or Guardian Connect do
not introduce such delays, instead relaying data to partners much closer to real-time. In each
case, added latency is an intentional trade-off to filter or enrich the data before it reaches
external developers.

Thus, the introduction of an intermediary pathway is a deliberate architectural choice which
can be deployed to i) manage complexity, ii) enhance security, or iii) add analytical value to
the data. While such systems may not be functionally real-time, their latency is often a
legitimate and necessary trade-off for these other essential functions.
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4.2 Intrinsic cadence

4.2.1 Physical cadence

As noted earlier, every data source has an intrinsic cadence that sets a hard limit on update
frequency. In health monitoring, for example, CGMs (Libre 3, Guardian Connect) cannot
reflect blood-sugar changes faster than the body’s own chemistry (~5 minutes for glucose to
diffuse into interstitial fluid). Likewise, wearable heart-rate monitors (eg, Polar H10, Garmin
Vivosmart 5) deliberately average readings over ~8 seconds (a full breath cycle) to yield a
stable BPM instead of noisy beat-by-beat data. In such cases, trying to force faster updates
would either deliver no new information or produce meaningless noise. This cadence is a
deliberate design choice to produce a stable and clinically meaningful reading.

Attempting to sample more frequently than this natural cadence would be counterproductive.
For instance, a CGM polling for updates every second would not yield new information, it
would simply return the same reading for five minutes while needlessly draining the sensor's
battery. For a heart rate monitor, it would deliver a stream of noisy data that is less useful for
tracking fithess or health trends. Therefore, the “near-live” taxonomy classification can be
evidence of a well-designed system that has optimised its architecture to match the physical
reality of the data source.

4.2.2 Digital cadence

In purely digital contexts, platforms often impose cadence artificially for stability. For
example, high-frequency trading APIs (Alpaca with ~20ms updates, Tradier ~60ms) enforce
strict rate limits on requests. In these cases, using a push-based direct streaming model is
essential for real-time updates. Without this, any attempt at millisecond polling would be
throttled by the platform’s rules.

4.2.2.1 Rate limits and sampling intervals

Rate limits control how many requests a client can make in a specific period.?° These are
necessary mechanisms for ensuring system stability and fair access, as they prevent any
single user from overwhelming the platform's servers with too many requests in a short
period.*® For example, poorly configured or malicious application could send millions of
requests without these limits being in place. This would consume a disproportionate amount
of server resources like network bandwidth.

Rate limits are particularly visible on many of the implementations we have examined like X
(Twitter), Slack, and Charles Schwab. The Charles Schwab Trader API limits market data
requests to 120 per minute, while the X API limits timeline requests to 900 per 15-minute
window. Similarly, Slack’s API has multiple tiers, with most methods allowing between
20-50+ requests per minute. In particular, these limits guide developers away from
high-frequency polling.

This architecture contrasts sharply with the “push" models, which are designed to bypass

8 hitps://www.cloudflare.com/en-gb/learning/bots/what-is-rate-limiting/
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this problem entirely. Instead of the client repeatedly asking for data and hitting rate limits,
the server automatically pushes updates as they happen, better enabling a truly live data
stream. However, a "pull" model is still chosen for important trade-offs. It gives the client full
control over when to request data and is significantly more efficient for conserving resources
like device battery life. This often makes it a deliberate choice when achieving real-time
speed is not the primary goal (eg, Dexcom G7).

4.2.2.1 Mutability

Finally, the mutability of data can introduce complexity.*’ ® For an “immutable” stream like
stock ticks, new data is simply appended. This is true for the brokerage APIs from Alpaca
and Tradier, where each new stock price is a new, unchangeable fact. It's also true for health
sensors like the FreeStyle Libre 3 or a Polar heart rate monitor; a glucose or heart rate
reading from a minute ago is a historical measurement that cannot be altered. In these
cases, the challenge is to deliver new data as fast as possible. The architecture is optimised
for a one-way flow of information.

However, on platforms like Slack, messages can be edited or deleted (ie, “mutable”). This
creates a complex cadence of “CREATE”, “UPDATE”, and “DELETE” events, shifting the
architectural challenge from simply delivering new data to synchronising all changes in
real-time. Interestingly, many of the systems with higher latency in our study (Slack, X, Plaid,
Yodlee, Gmail, etc.) allow records to be edited or deleted after creation, unlike simpler feeds
that only ever append new data. A message can be edited, a transaction status can be
updated from "pending" to "cleared," or an email can be deleted. This creates a complex
cadence of events beyond just "new data." To illustrate, being "real-time" here can mean:

e Delivering new messages quickly.

e Delivering edits to old messages just as quickly to all users.

e Delivering deletions of old messages to ensure they are removed from everyone's

view instantly.

This means the system has to keep every user’s view fully in sync, not just deliver new
items. Any lag or failure in synchronising changes could, for example, cause someone to see
and reply to a message that was already deleted, or act on a transaction status that’s
outdated. Handling new events in addition to edits and deletions in real time adds complexity
(and with it, some latency) compared to a simple append-only feed.

To conclude, designing continuous and real-time data transfers around a data source's
intrinsic cadence can help to i) ensure data quality by respecting physical limits, ii) maintain
system stability via rate limits, or iii) preserve the integrity of mutable data. In other words,
the fastest possible architecture is not always the most effective, as optimising for a data
source's 'natural rhythm' ensures the information is meaningful, stable, and reliable.

4.3 Interoperable standards

The relationship between interoperability, open standards, and latency is also complex.
Certain open standards (IMAP IDLE for email, JMAP, WebSockets, etc.) were created so

1 hitps://www.barroso.org/publications/TheTailAtScale.pdf
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that any third-party app can get updates without constant polling.*® For instance, IMAP IDLE
lets an email server instantly notify a client when a new message arrives, and Slack/Discord
use standard WebSocket connections to push events to external apps in real time. Open
standards eliminate the need for each service to poll continuously, allowing low-latency
updates across a diverse ecosystem of apps through a common protocol.

The Open Data Institute (ODI) argues that key parts of our data infrastructure (including
identifiers, standards, and registers) should be treated as public goods.** From this
perspective, standards like IMAP or open protocols for financial data are foundational
components of a shared infrastructure that enables competition and innovation.®® Closed,
proprietary ecosystems may achieve marginal performance gains by avoiding the overhead
of interoperability. Yet, this can come at the cost of a less dynamic and more concentrated
market.

4.3.1 The counterfactual of closed ecosystems

Finally, we note that closed, vertically integrated ecosystems can sometimes achieve the
absolute lowest latency. For example, the fastest solutions we examined (such as Medtronic
and Garmin’s sensor systems) tightly control every component (from hardware through cloud
to app) and avoid any third-party handoffs. This end-to-end integration can help to eliminate
the overhead of interoperability, squeezing out extra milliseconds of delay.®® Conversely,
when the goal is to work across a diverse open ecosystem of apps and devices, using open
standards is crucial for compatibility, even if it introduces a bit more latency.

In essence, there is a trade-off. Namely: i) maximum speed can be attained through a
self-contained design in certain contexts, whereas ii) achieving real-time data transfers
across a diversity of applications benefits from an easily-accessible, common language (ie,
open and interoperable standards).

5. Concluding remarks

This report has aimed to bring clarity to the "continuous and real-time" data portability
mandates emerging in digital competition policy by introducing a new taxonomy and the
concept of Functional Real-Time. In this way, our analysis is intended to be descriptive (ie, a
map of how real-time data transfers work in practice) rather than normative.

A key finding is that a one-size-fits-all standard for "real-time" is impractical. Context is
paramount, and latency is often the result of deliberate and sometimes necessary trade-offs.
We observed that many implementations fell short of their Functional Real-Time thresholds,
not because of technical limitations, but because of architectural choices that prioritise other
valuable goals.
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Furthermore, the taxonomy developed in this report provides a common language for these
factors. Together with the FRT framework, this highlighted a range of factors likely affecting
the degree of "real-time", such as: intermediary analytical layers to enrich data, intentional
delays to ensure security and manage complexity at scale, and the inherent overhead
required to support open, interoperable standards over closed ecosystems. Furthermore, the
intrinsic physical or digital cadence of the data source itself often sets a hard limit on how
"live" a data transfer can meaningfully be.

5.1 Implications for competition policy and enforcement

The findings and frameworks presented here have direct implications for the implementation
and enforcement of digital competition laws like the DMA.

1. For compliance assessments: Regulators can use the taxonomy as a checklist to
assess a gatekeeper's data portability implementation. For example, an architecture
that relies solely on a "pull" model with "periodic" updates for dynamic data (like
social media posts) might fail a functional real-time test, suggesting a possible
compliance failure.

2. For remedy design: The FRT framework provides a defensible, context-aware
method for setting latency requirements in remedial orders. Rather than mandating
an impossible "absolute" real-time, orders can specify that data must be delivered
within the FRT threshold for its use case (eg, 100ms for messaging, 5 minutes for
glucose data).

3. For distinguishing legitimate from anti-competitive delay: The taxonomy helps
identify when latency is a legitimate trade-off (eg, for security or data enrichment)
versus when it is a deliberate tactic to undermine portability. A deliberate,
non-technical delay like the Dexcom G7's 3-hour API lag, which is not applied to its
own first-party app, could be scrutinised as a potential violation of the DMA's spirit
and letter.

4. For promoting interoperable standards: The analysis suggests that while closed
ecosystems can achieve the lowest latency, open standards are crucial for a dynamic
and competitive market of third-party services. Policymakers should consider
mandating support for open, push-based standards (eg, WebSockets, JMAP) to
ensure a level playing field.

5. For cross-jurisdictional learning: The taxonomy and FRT framework provide a
common language and evaluation metric for regulators in the EU, UK, US, Japan,
and other jurisdictions considering DMA-style rules. This can help harmonise
compliance expectations for global gatekeepers and create a shared evidence base
for what constitutes effective real-time data portability.

Building on this work, policymakers and developers can move beyond an absolutist view of
speed by using the combined toolkit of the taxonomy and the FRT framework. Instead, they
can engage in a more nuanced evaluation of data portability solutions, ensuring that data
flows are fast but ultimately fit for purpose.



Annex A. Methodology

Use case selection

The use case areas, use cases and implementations were selected to provide a broad and
representative sample of user-initiated and user-consumed personal data transfers. This
approach was chosen to distil generalisable principles about what "continuous and real-time"
means across a diverse set of common applications.

Use case area screening criteria

a. User-oriented data? We restrict to data that end users generate through their own
activity and can lawfully port to themselves or authorised third parties. This directly
tracks the DMA’s obligation on gatekeepers to provide “effective portability [...]
including continuous and real-time access” for end users and authorised third parties,
via appropriate technical measures (eg, APIs). Selecting user-oriented data keeps
the study aligned to the DMA’s target of end-user data access and real-time
portability.®’

Sensitive data? Priority is given to domains where misuse or delay has higher risk
(eg, health and financial contexts). Health data is expressly a GDPR special category
requiring enhanced protections; analysing real-time portability where safeguards are
strictest stress-tests policy and implementation. Financial data, while not a GDPR
special category, is widely treated by regulators as high-risk in breach contexts,
warranting heightened controls; examining it surfaces real trade-offs between speed,
safety and consent.*®

Diverse data? We attempted to study across domains and data types (eg,
physiological signals, transactions, communications) to derive a taxonomy general
enough for policy use beyond a single sector. We intentionally selected cases that
are as different as possible to reveal cross-cutting patterns between different data
types. In the portability context, diversity improves external validity and supports
competition/empowerment aims highlighted in recent OECD work.

Use case screening criterion

b. Consumer application? Within each area, we include only consumer-facing
applications where a user (or a third party they authorise) actually consumes the data
stream. This keeps the analysis focused on portability as a practical right and
competition lever for end users, rather than back-end M2M/IloT integrations. In turn,
this operationalises the DMA’s end-user portability mandate (real-time and
continuous access “to data provided by the end user or generated through the
activity of the end user”) and ties findings directly to potential enforcement
scenarios.®

% https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX%3A32022R 1925
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Implementation screening criteria

c. Adoption: The chosen implementations have significant user adoption or are
considered industry standards, making the analysis relevant to a large segment of
the market. Niche or obscure technologies were avoided.

Availability of technical specifications: An important requirement was the public
availability of technical specification documents, API documentation, or detailed
technical descriptions. This was essential to enable an evidence-based classification
of each implementation against the taxonomy dimensions.

Functional Real-Time (FRT) framework

The FRT framework is a conceptual adaptation of Maister's First Law of Service, which
posits that customer satisfaction is a function of the gap between perception and
expectation, often expressed as:

Satisfaction = Perception - Expectation'®

This psychological principle is translated into a simple quantitative framework for evaluating
data transfer latency. In this model, "Perception” is analogous to Immediacy, the technical
threshold at which a system's response feels instantaneous to a human user. "Expectation”
is analogous to Timeliness, the context-dependent requirement for how quickly data must
be delivered to be useful for a specific task. This relationship is formalised in a metric called
the Real-Time Surplus (RTS), calculated as:

RTS = Immediacy - Timeliness

The RTS score provides a clear, quantitative basis for determining whether a system's
real-time performance is limited by human perception or by the inherent constraints of the
process itself. The credibility of the FRT framework rests on the evidence-based definitions
of its two core components:

1. Immediacy (perception): Immediacy is defined as the perceptual threshold for an
"instant" response. This value is benchmarked at 100ms, based on the foundational
usability research of Jakob Nielsen.' This body of work establishes that 100ms is
the cognitive limit for a user to feel that they are directly manipulating an on-screen
object and that the system is reacting instantaneously. While some specialised
research has identified lower perception thresholds for specific, highly sensitive tasks
like direct stylus input, the 100ms standard remains the most widely accepted and
empirically robust benchmark for general human-computer interaction. Anchoring
Immediacy to this principle provides a stable, evidence-based reference point for all
use cases where the user's perceptual experience is the primary consideration.

2. Timeliness (expectation): Timeliness is defined as "the shortest meaningful interval
at which a phenomenon can be observed or reported without distortion." This value is
inherently context-dependent and must be justified by the physical, physiological, or
logical constraints of the specific use case. For each use case area in this study, a

100 hitps://www.humanfactors.com/newsletters/are_we_there_vet_effects of delay.asp
101 https://www.nngroup.com/books/usability-engineering/




Timeliness value was established through a review of relevant technical and scientific
literature:

a. Continuous Glucose Monitoring (CGM): Timeliness is set at 5
minutes (300,000ms). This is determined by the hard physiological limit
of glucose transport from blood capillaries to the interstitial fluid where
sensors take their measurements. Sampling more frequently would yield
no new information. ' 103 104 105

b. Heart Rate Monitoring (HRM): Timeliness is set at 8 seconds
(8,000ms). This reflects the clinical requirement to average beat-to-beat
intervals over at least one full respiratory cycle to produce a stable and
meaningful beats-per-minute (BPM) reading, filtering out natural
arrhythmia.“’ﬁ 107 108 109 110

c. Digital communications (Finance, Messaging, Mail): Timeliness is set
at 15ms. This value represents the physical limit of network technology,
benchmarked against the lowest reported Verizon intra-Europe round-trip
time (RTT). It represents the fastest possible data transfer, abstracting
away from application-level or systemic delays. "' 112 113

The dual-component nature of this framework resolves the central tension between the
DMA's ambitious "real-time" mandate and the practical realities of data generation and
transfer. It allows for a fair assessment by distinguishing between systems that are
technically capable of being instantaneous (eg, financial data transfer) and those that are
limited by immutable physical constraints (eg, physiological monitoring.)

Interpreting RTS and determining the FRT threshold

The final FRT threshold for a given use case is determined by the RTS score, providing a
clear logic for setting a defensible performance benchmark.

e If RTS is positive (Immediacy > Timeliness), the use case is perception-limited. The
physical process is faster than human perception. Therefore, the FRT threshold is set
by the higher standard of Immediacy (100ms).

e |If RTS is negative (Timeliness > Immediacy), the use case is process-limited. An
inherent delay in the underlying phenomenon is much longer than the threshold for
human perception. Therefore, the FRT threshold is set by the more lenient standard of
Timeliness.

192 hitps://pubmed.ncbi.nlm.nih.qgov/24009261/

103 https://pubmed.ncbi.nim.nih.gov/26243773/
104 hitps://pubmed.ncbi.nlm.nih.qov/31059282/

105 https://pme.ncbi.nlm.nih.gov/articles/PMC3005050/
196 hitps://arxiv.org/abs/2306.07730

107 https://www.ncbi.nlm.nih.gov/books/NBK549803/
198 hitps://pubmed.ncbi.nlm.nih.qov/8598068/
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™ https://www.verizon.com/business/terms/latency/

112

https://www.netforecast.com/wp-content/uploads/2022-Internet-L atency-Report_NetForecast NFR514
9.pd

"3 https://cdn.cabling-design.com/media/43612/64fd4fcf62bcd0.10037069.pdf




This logic allows for nuanced, contextually appropriate judgments. For example, a brokerage
app with a 500ms latency would fail its FRT test, as this is well above the 100ms Immediacy
threshold. In contrast, a continuous glucose monitor that delivers data every minute is well
within its 5-minute Timeliness threshold and would therefore be considered functionally
real-time for its purpose. Using this tool, we provide the FRT thresholds in Table 2.

Table 2. RTS scores and FRT threshold for each use case

Use case Immediacy Timeliness RTS Limiting Final FRT

area (ms) (ms) calculation factor threshold
(ms)

Blood Glucose 100 300,000 -299,900 Process 5 minutes

Monitoring

Heart Rate 100 8,000 -7,900 Process 8 seconds

Monitoring

Budgeting 100 15 +85 Perception 100

Apps milliseconds

Brokerage 100 0.0M +99.989 Perception 100

Apps milliseconds

Messaging & 100 15 +85 Perception 100

Social Media milliseconds

Mail & 100 15 +85 Perception 100

Calendar milliseconds

Sync

The process for selection of the use case area, use case, implementations and the FRT
assessment are summarised below in Figure 8.

Figure 8. Methodology workflow
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Annex B. Taxonomy placement

Table 3. Continuous and real-time data transfer taxonomy

Criteria

Subcriteria

Implementations

1. Where is data
sharing initiated by
the user?

Initiated from the
source platform

Garmin The Vivosmart 5 API
Fitbit (Charge 5/Sense) API

Initiated from the
third-party
application

Plaid Webhooks

Yodlee Webhooks
TrueLayer

Charles Schwab Trader API
Alpaca Markets API

Tradier API

Discord API

X Filtered Stream API
Slack Events API

Initiated from
on-device pairing

Dexcom G7

FreeStyle Libre 3 Sensor
Medtronic Guardian Connect
Polar H10 (via BLE)

2. What is the data
pathway?

On-device hub

FreeStyle Libre 3

Medtronic Guardian Connect
Abbott Lingo

Garmin Vivosmart 5

Direct connection

Polar H10

Fitbit

Charles Schwab Trader API
Alpaca Markets API

Tradier API

Discord API

X (Twitter) API v2

Slack Events API

Fastmail (JMAP)

Dovecot (IMAP)

Intermediary hub

Dexcom G7

Plaid Webhooks

Yodlee Webhooks

TrueLayer

Gmail & Google Calendar (Workspace APIs)

3. Whose credentials?

User credentials only

Dovecot (IMAP)
Polar H10 (via BLE)

User and vetted 3rd
party credentials

Dexcom G7 (Dexcom API V3)
Plaid Webhooks
Yodlee Webhooks




TrueLayer

Charles Schwab Trader API
Alpaca Markets API

Tradier API

Discord API

X Filtered Stream API

Slack Events API

Gmail (Google Workspace API)
Garmin The Vivosmart 5 API
Fitbit (Charge 5/Sense) API

On-device pairing -
Proximity

FreeStyle Libre 3 Sensor
Medtronic Guardian Connect

4. How is user consent
obtained?

Explicit consent via
redirect

Dexcom G7 (Dexcom API V3)
Plaid Webhooks

Yodlee Webhooks

TrueLayer

Charles Schwab Trader API
Alpaca Markets API

Tradier API

Discord API

X Filtered Stream API

Slack Events API

Gmail (Google Workspace API)

Implicit consent via
in-app invitation

FreeStyle Libre 3 Sensor
Medtronic Guardian Connect
Polar H10 (via BLE)

Garmin The Vivosmart 5 API
Fitbit (Charge 5/Sense) API
Fastmail (JMAP)

Dovecot (IMAP)

5. What is the duration
of the permission?

Time-bound

Abbott Lingo

Plaid Webhooks

Yodlee Webhooks

TruelLayer

X (Twitter) APl v2

Gmail & Google Calendar (Workspace APIs)

Open-ended

Dexcom G7

FreeStyle Libre 3

Medtronic Guardian Connect
Polar H10

Garmin Vivosmart 5

Fitbit

Charles Schwab Trader API
Alpaca Markets API

Tradier API

Discord API

Slack Events API




Fastmail (JMAP)
Dovecot (IMAP)

6. How is new data
delivered?

Pull

Dexcom G7
FreeStyle Libre 3

Push

Medtronic Guardian Connect
Abbott Lingo

Garmin Vivosmart 5

Polar H10

X (Twitter) API v2

Alpaca Markets API

Tradier API

Charles Schwab Trader API

Hybrid

Plaid Webhooks

Yodlee Webhooks

Slack Events API

Discord API

Fastmail (JMAP)

Dovecot (IMAP)

Gmail & Google Calendar (Workspace APIs)
Fitbit

TruelLayer

7. Can existing data be
changed?

Immutable
(append-only)

Dexcom G7

FreeStyle Libre 3

Medtronic Guardian Connect
Abbott Lingo

Polar H10

Garmin Vivosmart 5

Alpaca Markets API

Tradier API

Mutable (append
with changes)

Fitbit

Plaid Webhooks

Yodlee Webhooks
TruelLayer

Charles Schwab Trader API
Discord API

X (Twitter) APl v2

Slack Events API

Fastmail (JMAP)

Dovecot (IMAP)

Gmail & Google Calendar (Workspace APIs)

8. How frequent is the
data?

Live

Garmin Vivosmart 5
Charles Schwab Trader API
Alpaca Markets API

Tradier API

Discord API

Fastmail (JMAP)

Near-live

Polar H10
Fitbit
Plaid Webhooks




Yodlee Webhooks

TrueLayer

X (Twitter) APl v2

Slack Events API

Dovecot (IMAP)

Gmail & Google Calendar (Workspace APIs)

Periodic

Dexcom G7




